Answer:
2.99×10²⁵ molecules of CO₂ are produced
Explanation:
Decomposition reaction is:
Ca(HCO₃)₂ => CaO(s) + 2CO₂(g) + H₂O(g)
Ratio is 1:2. Let's make a rule of three:
1 mol of bicarbonate can produce 2 moles of CO₂
Therefore, 24.9 moles of bicarbonate may produce, 49.8 moles (24.9 .2 )/1
Let's determine the number of molecules
1 mol has 6.02×10²³ molecules
49.8 moles must have (49.8 . 6.02×10²³) / 1 = 2.99×10²⁵ molecules
Answer:
The average kinetic energy of the system has increased as a result of the temperature increasing.
Explanation:
Assuming this is a gas based on the framing.
The molecules of a gas span a distribution of speeds, and the average kinetic energy of the molecules is directly proportional to the absolute temperature of the sample. KEavg is proportional to T.
This can be further studied until the Kinetic-Molecular Theory.
this is the answer of your question .
<em>Hope</em><em> </em><em>it</em><em> </em><em>helped </em><em>you</em>
<span>Hydrogen can be obtained economically as a byproduct in the electrolysis of "brine".
</span>
A solution of sodium chloride (NaCl)and water (H2O) refers to the brine.The procedure of electrolysis includes utilizing an electric current to achieve a synthetic change and make new chemicals. The electrolysis of brine is a huge scale process used to make chlorine from salt, so three important chemicals, NaOH, Cl2, H2, can be gotten by electrolyzing brine.
The hydrogen bonds that form between water molecules account for some of the essential and unique properties of water. The attraction created by hydrogen bonds keepswater liquid over a wider range of temperature than is found for any other molecule its size.
Hope this helped!