Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
Answer:
Propels in the opposite direction
Explanation:
The main danger is vehicles making u-turns or pulling out without signalling.
Answer:
a) Θ = ω₀*t + ½αt² To complete first revolution 2π rads = 0*t + ½αt² and to complete the first and second combined 4π rads = 0*t + ½α(t+0.810s)² Divide second by first: 2 = (t + 0.810s)² / t² This is quadratic in t and has roots at t = -0.336 s ← ignore and t = 1.96 s ◄ b) Use either equation from above: 2π rads = 0*t + ½α(1.96s)² α = 3.27 rad/s² ◄ Hope this helps!
Explanation: