Answer:
Explanation:
Given mass of piston 
no. of moles =n
Given Pressure remains same
Temperature changes from 
Work done
W=
also 


V = u + at where u is initial velocity (15 m/s), a is acceleration (2m/s^2) and t is time (15 seconds)
V = 15 + 2 X 15
V = 45 m/s
Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers
Answer:
the time interval that an earth observer measures is 4 seconds
Explanation:
Given the data in the question;
speed of the spacecraft as it moves past the is 0.6 times the speed of light
we know that speed of light c = 3 × 10⁸ m/s
so speed of spacecraft v = 0.6 × c = 0.6c
time interval between ticks of the spacecraft clock Δt₀ = 3.2 seconds
Now, from time dilation;
t = Δt₀ / √( 1 - ( v² / c² ) )
t = Δt₀ / √( 1 - ( v/c )² )
we substitute
t = 3.2 / √( 1 - ( 0.6c / c )² )
t = 3.2 / √( 1 - ( 0.6 )² )
t = 3.2 / √( 1 - 0.36 )
t = 3.2 / √0.64
t = 3.2 / 0.8
t = 4 seconds
Therefore, the time interval that an earth observer measures is 4 seconds
Answer:
it is the judicious use of energy to prevent wastage