I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J.
At point A, all this energy has converted into kinetic energy, which is:

And since K=7.35 J, we can find the velocity, v:
Find the force that would be required in the absence of friction first, then calculate the force of friction and add them together. This is done because the friction force is going to have to be compensated for. We will need that much more force than we otherwise would to achieve the desired acceleration:

The friction force will be given by the normal force times the coefficient of friction. Here the normal force is just its weight, mg

Now the total force required is:
0.0702N+0.803N=0.873N
Answer:
3150
Explanation:
if if you were two times 45 times 70 it would give you that answer
Answer:
1) Addition of a catalyst
2) To change the reaction rate of slope B to look like slope A, simply add a catalyst to speed up the rate of reaction, giving you a higher amount of products in a shorter amount of time (line A)
Explanation:
1 and 2)Two things can alter the rate of a reaction, either the addition of a catylist which will not alter the composition of the products or reactants, but will accelerate the reaction time, or an increase in temperature will also increase the rate at which a reaction will occur.
You could choose temperature also and have the same result, it's your choice both are correct, but catalyst is the easiest.
75 percent off of water and please water the light water and water water and then go back and please water pollution please 880m