Answer:
5N
Explanation:
We have a simple problem of momentum here.
ΔMomentum= mΔv= FΔt
Solve for F
mΔv/Δt=F
Plug in givens
1*(2-1.5)/0.1=F
F=5N
Substract two consecutive terms of the sequence to see if there is a common difference:

As we can see, there is a common difference of -6.
Then, if a number of the sequence is given, the next one can be found by adding -6 (which is the same as subtracting 6).
Notice that the first term of the sequence is 3.
Then, the rule for the sequence is to start with 3 and add -6 repeatedly.
Therefore, the correct choice is option A) Start with 3 and add -6 repeatedly.
Answer:
60 cm
Explanation:
We are given;
- Focal length of a concave mirror as 30.0 cm
- Object distance is 15.0 cm
We are required to determine the radius of curvature.
We need to know that the radius of a curvature is the radius of a circle from which the curved mirror is part.
We also need to know that the radius of curvature is twice the focal length of a curved mirror.
Therefore;
Radius of curvature = 2 × Focal length
Therefore;
Radius of curvature = 2 × 30 cm
= 60 cm
Explanation:
We'll need two equations.
v² = v₀² + 2a(x - x₀)
where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.
x = x₀ + ½ (v + v₀)t
where t is time.
Given:
v = 47.5 m/s
v₀ = 34.3 m/s
x - x₀ = 40100 m
Find: a and t
(47.5)² = (34.3)² + 2a(40100)
a = 0.0135 m/s²
40100 = ½ (47.5 + 34.3)t
t = 980 s