Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4
Answer:
The answer is a for Plato users.
Explanation:
Since the angle of the refracted ray moves away from the normal, it must be traveling in a faster medium.
matter = solid, liquid gas.
energy typyes, kinetc in a gas, kinetc and electrostatic in solids and liquids
Answer:
DU = 375 Joules
Explanation:
Given the following data;
Quantity of heat = 500 Joules
Work done = 125 Joules
To find the change in internal energy;
Mathematically, the change in internal energy of a system is given by the formula;
DU = Q - W
Where;
- DU is the change in internal energy.
- Q is the quantity of energy.
- W is the work done.
Substituting into the formula, we have;
DU = 500 - 125
<em>DU = 375 Joules</em>
They are the same. If this is all happening on Earth, then the ball's acceleration is 9.8 m/s^2 in either case. That's the acceleration of gravity around here.