1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
10

1.Which of the following is evidence that the Earth is round?

Physics
2 answers:
Tju [1.3M]3 years ago
7 0
1. B (the ship slowly appears on the horizon as it approaches)
2.B (false)
PtichkaEL [24]3 years ago
5 0

Answer:

1\D. Both A and C

2\A true

You might be interested in
Wave traveling at 330 m/sec has a wavelength of 4.3 meters. What is the frequency of this wave?
Rasek [7]

Answer:

76.74 Hz

Explanation:

Given:

Wave velocity ( v ) = 330 m / sec

wavelength ( λ ) = 4.3 m

We have to calculate Frequency ( f ):

We know:

v = λ / t [ f = 1 / t ]

v = λ f

= > f = v / λ

Putting values here we get:

= > f = 330 / 4.3 Hz

= > f = 3300 / 43 Hz

= > f = 76.74 Hz

Hence, frequency of sound is 76.74 Hz.

6 0
2 years ago
How is newton's first law used in basketball?
arlik [135]

Newton's first law of motion states that an object at rest tends to stay at rest, while an object in motion tends to stay in motion unless an external force acts upon it. This law appears in basketball when the player is shooting the ball. When the player is holding the ball, the ball is at rest but when a player shoots the ball, they use force to throw the ball in the hoop.

4 0
3 years ago
A person driving her car at 48 km/h approaches an intersection just as the traffic light turns yellow. She knows that the yellow
trasher [3.6K]

Answer:

She must stop the car  before interception, distance traveled 12.66 m

Explanation:

We will take all units to the SI system

Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s

V2 = 70 Km / h = 19.44 m / s

We calculate the distance traveled before stopping

X = Vo t + ½ to t²

Time is what it takes traffic light to turn red  is t = 2.0 s

X = 13.33 2 + 1.2 (-7) 2²

X = 12.66 m

It stops car before reaching the traffic light turning to red

Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle

     V2 = Vo + a t2

      a = (V2-Vo) / t2

      a = (19.44-13.33) /6.6

      a = 0.926 m / s2

This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)

X = Vo t + ½ to t²

X = 13.33 2 + ½ 0.926 2²

X = 28.58 m

Since the vehicle was 30 m away, the interception does not happen

4 0
3 years ago
You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov
Marina CMI [18]

Answer:

<em>a. The frequency with which the waves strike the hill is 242.61 Hz</em>

<em>b. The frequency of the reflected sound wave is 254.23 Hz</em>

<em>c. The beat frequency produced by the direct and reflected sound is  </em>

<em>    11.62 Hz</em>

Explanation:

Part A

The car is the source of our sound, and the frequency of the sound wave it emits is given as 231 Hz. The speed of sound given can be used to determine the other frequencies, as expressed below;

f_{1} = f[\frac{v_{s} }{v_{s} -v} ] ..............................1

where f_{1} is the frequency of the wave as it strikes the hill;

f is the frequency of the produced by the horn of the car = 231 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 36.4 mph

Converting the speed of the car from mph to m/s we have ;

hint (1 mile = 1609 m, 1 hr = 3600 secs)

v = 36.4 mph *\frac{1609 m}{1 mile} *\frac{1 hr}{3600 secs}

v = 16.27 m/s

Substituting into equation 1 we have

f_{1} =  231 Hz (\frac{340 m/s}{340 m/s - 16.27 m/s})

f_{1}  = 242.61 Hz.

Therefore, the frequency which the wave strikes the hill is 242.61 Hz.

Part B

At this point, the hill is the stationary point while the driver is the observer moving towards the hill that is stationary. The frequency of the sound waves reflecting the driver can be obtained using equation 2;

f_{2} = f_{1} [\frac{v_{s}+v }{v_{s} } ]

where f_{2} is the frequency of the reflected sound;

f_{1}  is the frequency which the wave strikes the hill = 242.61 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 16.27 m/s.

Substituting our values into equation 1 we have;

f_{2} = 242.61 Hz [\frac{340 m/s+16.27 m/s }{340 m/s } ]

f_{2}  = 254.23 Hz.

Therefore, the frequency of the reflected sound is 254.23 Hz.

Part C

The beat frequency is the change in frequency between the frequency of the direct sound  and the reflected sound. This can be obtained as follows;

Δf = f_{2} -  f_{1}  

The parameters as specified in Part A and B;

Δf = 254.23 Hz - 242.61 Hz

Δf  = 11.62 Hz

Therefore the beat frequency produced by the direct and reflected sound is 11.62 Hz

3 0
3 years ago
give an example of situation in which an automobile driver can have a centripetal acceleration but no tangential speed
Mars2501 [29]

There is no need for tangential acceleration when moving in a circle at a constant speed.

<h3>What is centripetal acceleration?</h3>

centripetal acceleration refers to the speed at which a body moves through a circle. Due to the fact that velocity is a vector quantity (i.e., it has both a magnitude, the speed, and a direction), when a body travels in a circle, its direction is constantly changing, which causes a change in velocity, which results in an acceleration.

<h3>Which is an example of centripetal acceleration?</h3>

Centripetal acceleration occurs when you spin a ball on a string above your head. A car experiences centripetal acceleration when it is being driven in a circle. Additionally, a satellite in orbit around the Earth experiences centripetal acceleration.

To know more about tangential acceleration :

brainly.com/question/14993737

#SPJ9

6 0
1 year ago
Other questions:
  • You are an industrial engineer with a shipping company. As part of the package- handling system, a small box with mass 1.60 kg i
    9·1 answer
  • How is heavy water different from normal water
    6·2 answers
  • If the net force on a 75-N object is 375 N from the left, in what direction will the object move?
    7·2 answers
  • Can someone write a 200 speech that explains the difference between analog and digital waves and which one is better?
    8·1 answer
  • a condenser of capacitor 50 micro coulomb is charged to 10 volt the energy stored is can you do derivation please
    14·1 answer
  • A car at a position 150 km [W] of Toronto travels to a position 400 km [W] of
    15·1 answer
  • An object moves at constant speed in a circle. Which of the following is true:
    14·1 answer
  • A student is blowing over a straw 25 cm long, which is closed at one end. If the sound produced has a frequency of 350 Hz, what
    15·1 answer
  • View the graph of sun hours in a city.
    10·1 answer
  • A huge block of stone has a mass of 650kg and gains 70000j of gpe. how high has it been raised? (g = 10m/s2 )
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!