The metal properties that make up electrical wires are conductivity and ductility. Conductivity is important for free electrons to flow, hence electricity. Ductility is as well integral for strips to be formed, but with ample strength that does not break the material.
<em>Same group element have same</em><em><u> Valence electron</u></em><em> and behave similarly in </em><em><u>Chemistry.</u></em>
<u>Explanation:</u>
For example. First group elements Alkali metals:- H, Li, K, Rb, Cs, Fr
Valance electron will take part in forming a bond with other elements and compound will form. All the above-given elements (H-Fr) have valence electron 1 in outer most 'S' shell. All have electronic configuration S1
Behavior: Since valence electrons are the same so the behavior of all the elements in this group is the same. All are metal (from Li-Fr, except Hydrogen), all are very reactive, does not found in native state in the environment, and all react with water.
Answer:
207.89g
Explanation:
The formula of the compound is:
Fe₂S₃
Find the molar mass of the compound;
Atomic mass of Fe = 55.845g/mol
S = 32.065g/mol
Now;
Molar mass of Fe₂S₃ = 2 (55.845) + 3 (32.065)
= 207.89g
<span>H2CO3 <---> H+ + HCO3-
NaHCO3 <---> Na+ + HCO3-
When acid is added in the buffer, the excess H+ of that acid reacts with HCO3- to form H2CO3, and due to this NaHCO3 dissociates into HCO3- to attain the equilibrium. and hence there is no net effect of H+ due to pH remain almost constant.
when a base is added to the buffer, the OH- ion of base react eith H+ ion present in buffer, then to attain equilibrium of H+ ion, the H2CO3 dissociates to produce H+ ion, but now there is the excess of HCO3- due to which Na+ ion react with them to attain equilibrium of HCO3-. hence there is again no net change in H+ ion due to which pH remain constant.....</span>
<span>Animal Cells
</span><span>Water Soak
</span><span> Slug Murder
</span><span>Root Pressure
</span><span>Cholera
</span><span>Pruned Fingers
</span><span>The Water Crisis</span>