D = distance between th two trains at the start of the motion = 100 miles
V = speed of the faster train towards slower train = 60 mph
v = speed of the slower train towards faster train = 40 mph
t = time taken by the two trains to collide = ?
time taken by the two trains to collide is given as
t = D/(V + v)
t = 100/(60 + 40) = 1 h
v' = speed of the bird = 90 mph
d = distance traveled by the bird
distance traveled by the bird is given as
d = v' t
d = 90 x 1
d = 90 miles
Answer:
Option D
Explanation:
<u><em>Given:</em></u>
Mass = m = 110 kg
Acceleration due to gravity = g = 9.8 m/s
<u><em>Required:</em></u>
Weight = W = ?
<u><em>Formula</em></u>
W = mg
<u><em>Solution:</em></u>
W = (110)(9.8)
W = 1078 N
For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s
Long straight distance that a person can swim is 5.64 m.
<h3>What is the
Long straight distance?</h3>
The line that runs form one end of the circle to another is called the diameter of the circle. The pool is a circle according to the question and the long straight distance that a person can swim is the same of the diameter of the circular pool.
Now we have;
A = πr^2
A = area of pool
r = radius of pool
r = √A/ π
r = √25/3.142
r = 2.82m
Diameter of the circular pool = 2 r = 2 (2.82 cm) = 5.64 m
Learn more about circle: brainly.com/question/11833983
#SPJ1
Missing parts;
An ad for an above-ground pool states that it is 25 m2. From the ad, you can tell that the pool is a circle. If you swim from one point at the edge of the pool to another, along a straight line, what is the longest distance d you can swim? Express your answer in three significant figures.