Answer:
Explanation:
Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by dropping a rock into it and listening for the rock to hit the bottom. By applying the kinematics developed so far to falling objects, we can examine some interesting situations and learn much about gravity in the process.
D, I believe would be the first minus the second vector.
To solve this I named the first vector as A and the second as B.
So... vector A - B = resultant
or A + (-B)
A negative indicates a direction of a vector so if we flip the direction the other way we have the first vector (A) pointing vertically upwards and then vector B pointing to the west.
Now we have to use the head to tail method, meaning that the head of the first vector has to connect with the tail of the other vector added.
So we should have something like this
(-B) < - - - - ^
|
| (A)
|
To add these two vectors, technically A - B, draw a line from the tail of A to the head of -B which would look like image D.
Hope this helped!
Answer:
The moment of inertia of the wheel is 0.593 kg-m².
Explanation:
Given that,
Force = 82.0 N
Radius r = 0.150 m
Angular speed = 12.8 rev/s
Time = 3.88 s
We need to calculate the torque
Using formula of torque



Now, The angular acceleration


We need to calculate the moment of inertia
Using relation between torque and moment of inertia




Hence, The moment of inertia of the wheel is 0.593 kg-m².