The partial atmospheric pressure (atm) of hydrogen in the mixture is 0.59 atm.
<h3>How do we calculate the partial pressure of gas?</h3>
Partial pressure of particular gas will be calculated as:
p = nP, where
- P = total pressure = 748 mmHg
- n is the mole fraction which can be calculated as:
- n = moles of gas / total moles of gas
Moles will be calculated as:
- n = W/M, where
- W = given mass
- M = molar mass
Moles of Hydrogen gas = 2.02g / 2.014g/mol = 1 mole
Moles of Chlorine gas = 35.90g / 70.9g/mol = 0.5 mole
Mole fraction of hydrogen = 1 / (1+0.5) = 0.6
Partial pressure of hydrogen = (0.6)(748) = 448.8 mmHg = 0.59 atm
Hence, required partial atmospheric pressure of hydrogen is 0.59 atm.
To know more about partial pressure, visit the below link:
brainly.com/question/15302032
#SPJ1
Answer : The final temperature of the mixture is 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of iron = 
= specific heat of water = 
= mass of iron = 39.9 g
= mass of water = 
= final temperature of mixture = ?
= initial temperature of iron = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the final temperature of the mixture is 
Answer:
c
Explanation:
the correct answer would be answer c
The rate of the reaction increases when a catalyst has been added to the reaction mixture by e) providing a new mechanism for the reaction to procced by
Catalyst, in chemistry, a substance that speeds up a reaction without itself being consumed. Enzymes are natural catalysts responsible for many important biochemical reactions.
Most solid catalysts are oxides, sulfides, halides of metals or metallic elements, and metalloid elements boron, aluminum and silicon. Gas and liquid catalysts are usually used in pure form or in combination with suitable carriers or solvents. Solid catalysts are usually dispersed in another material known as a catalyst support.
Learn more about the catalyst in
brainly.com/question/28813725
#SPJ4