In some early mornings , dew drops can be found on grass or a car parked outside, but not on other materials such as the sidewalk because the night -time temperature on grass and the car went below the dew point, but the temperature of the concrete did not drop enough to reach the dew point level
Dew can be formed on any object when the temperature of the object drop. When this happen, the object will be cool which will eventually cool the surrounding air around the object.
Dew drops is as a result of condensation in the air. When the cool air causes the air vapor to convert to liquid. The dew will form when the temperature of the object balances with the dew point in the surrounding environment.
In some early mornings , dew drops can be found on grass or a car parked outside, but not on other materials such as the sidewalk because the night -time temperature on grass and the car went below the dew point, but the temperature of the concrete did not drop enough to reach the dew point level
Therefore the correct option is therefore A
Learn more here : brainly.com/question/13834972
<span>D. density is your answer</span>
Explanation:
It is known that relation between force and acceleration is as follows.
F =
I is given that, mass is 1090 kg and acceleration is 21 m/s. Therefore, we will calculate force as follows.
F =
=
= 1430.625 N
Also, it is known that
= 7.70 degrees
Thus, we can conclude that the maximum steepness for the car to still be able to accelerate is 7.70 degrees.
Answer:
-223.64684 J
Explanation:
F = Force that is applied to the crate = 68 N
s = Displacement of the crate = 3.5 m
= Angle between the force and displacement vector = (180-20)
Work done is given by

The work that Paige does on the crate is -223.64684 J
The kinetic energy of an object is given by
KE = 0.5mv²
where m is the mass and v is the velocity.
To calculate the change in kinetic energy...
Initial KE:
KEi = 0.5mVi²
where Vi is the initial velocity.
Final KE:
KEf = 0.5mVf²
where Vf is the final velocity.
ΔKE = KEf - KEi
ΔKE = 0.5mVi² - 0.5mVf²
ΔKE = 0.5m(Vf²-Vi²)
Given values:
m = 16kg
Vi = 25m/s
Vf = 20m/s
Plug in the given values and solve for ΔKE:
ΔKE = 0.5×16×(20²-25²)
ΔKE = -1800J