Answer:
Static stretching is the answer.
Explanation:
Static stretching is the most common form that greatly improves flexibility. However, static stretches does little to contract the muscles needed to generate powerful golf swings. Dynamic stretches help improve your range of motion while reducing muscle stiffness.
128.1-127.8= 0.3Hz
<span>129.1-128.1= 1.0Hz </span>
<span>129.1-127.8= 1.3Hz</span>
Answer:
F= 5.71 N
Explanation:
width of door= 0.91 m
door closer torque on door= 5.2 Nm
In order to hold the door in open position we need to exert an equal and opposite torque, to the door closer torque, on the door.
so wee need to exert 5.2 Nm torque on the door.
If we want to apply minimum force to exert the required torque we need to apply force perpendicularly on the door knob (end of door) so that to to greater moment arm.
T= r x F
T= r F sin∅
F= T/ (r * sin∅)
F= 5.2/ (0.91 * 1)
F= 5.71 N
Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy