It magnifies light received from distant objects.
A plane mirror always forms a virtual image. the image and the object are the same distance from a flat mirror, the image size is the same as the object, and the image is upright!
Energy of the waves are redistributed to form a resultant wave with amplitude given by the summation of individual wave's amplitude.
<span>If the two waves are of same frequency, speed and amplitude and travelling in opposite direction den stationary waves are form.</span>
Answer: I = 3.6 m3
(C)
Explanation:
moment of inertia for spherically shaped object around it's center is given as
I = (2/5) mr²
substituting the r = 3m²
I = (2/5)*(9) m3
I = 3.6 m3
You do this one just like the other one that I just solved for you.
For this one ...
The density of the object is 2.5 gm/cm³.
We know that every cm³ of it we have contains 2.5 gm of mass.
We have to find out how many cm³ we have.
The question tells us: We have 2.0 cm³.
Each cm³ of space that the object occupies contains 2.5 gm of mass.
So the 2.0 cm³ that we have contains (2 x 2.5 gm) = 5 gms.
That's the mass of our object.