The two-second rule.
It is a common guideline to follow while driving.
It means that any given driver should be AT LEAST two seconds behind any vehicle that is driving in front of his vehicle. It might apply for any kind of vehicle.
The velocity of pin B after rod AB has rotated through 90* is vb = 3.2549 m/s.
<h3>What is Potential and Kinetic energy?</h3>
Potential energy is the energy that is stored in any item or system as a result of its location or component arrangement. The environment outside of the object or system, such as air or height, has no impact on it. In contrast, kinetic energy refers to the energy of moving particles inside a system or an item.
mass of rod, mab = 2.4kg
mass of rod, mbc = 4kg
conservation of energy


potential energy at position 1,

V1 = 2.5 * 9.81 * 0.18 + 4 * 9.81 * 0.18
V1 = 11.30112
kinetic energy T1 at position 1 is zero
potential energy at position 2 is zero
K.E at position 2,


= 1/3 *4 * (0.36)²
=0.10368kg m²

= 1/12 *4 * (0.6)²
=0.12kg m²
on putting the values in above equation we get,
T₂ = 1.0667vb²
0 + 11.30112 = 1.0667vb² + 0
vb = 3.2549 m/s
to learn more about Kinetic and potential energy go to - brainly.com/question/18963960
#SPJ4
Answer:

direction is Horizontal
Explanation:
As we know that the string is horizontal here
so the tension force in the string is due to electrostatic force on it
now we will have

so here the force is tension force on it


now we have


direction is Horizontal
Answer:
4 %
2 ) 3.42 %
Explanation:
Sensitivity requirement of 4 milligram means it is not sensitive below 4 milligram or can not measure below 4 milligram .
Given , 4 milligram is the maximum error possible .
Measured weight = 100 milligram
So percentage maximum potential error
= (4 / 100) x 100
4 %
2 )
As per measurement
weight of 6 milliliters of water
= 48.540 - 42.745 = 5.795 gram
6 milliliters of water should measure 6 grams
Deviation = 6 - 5.795 = - 0.205 gram.
Percentage of error =(.205 / 6 )x 100
= 3.42 %
To solve this problem, we use the equation:
<span>d = (v^2 - v0^2) /
2a</span>
where,
d = distance of collapse
v0 = initial velocity = 101 km / h = 28.06 m / s
v = final velocity = 0
a = acceleration = - 300 m / s^2
d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)
<span>d = 1.31 m</span>