Answer:
chymotrypsin, cleaves peptide bonds selectively on the carboxylterminal side of the large hydrophobic amino acids such as tryptophan, tyrosine, phenylalanine, and methionine
Under certain conditions butane reacts with oxygen to form butanone which can be easily hydrogenated to butanol. Butene is easily made from butanol by elimination of water.
Explanation:
These are for the first too
Answer:
Explanation:
The octet rule does not always refer to a stable arrangement of eight valence electrons because there are some element that do not have eight valence electrons yet they are stable. for example;
i) Helium, It has two valence electrons and it is a stable gas.
ii) Boron triflouride (BF3); it has six valence electrons (deficit valence electron) yet it is also stable.
iii) Phosphorus pentachloride (PCl5); it has more than eight valence electron and it is also stable.
For these few reasons it is not always advisable to say octet arrangement refer to stable eight valence electrons.
Nitrogen monoxide has 1 oxygen atom and
Nitrogen dioxide has 2 oxygen atoms
Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃