Dimension analysis is to be used to solve this problem. First convert 1L to milliliters. That is equivalent to 1000 ml. Then by dimension analysis, multiply the volume ( 1000ml) to the density of oil (0.92 g/ml) resulting to the answer: 920 grams.
1.34 L of HF
Explanation:
We have the following chemical reaction:
Sn (s) + 2 HF (g) → SnF₂ (s) + H₂ (g)
First we calculate the number of moles of SnF₂:
number of moles = mass / molecular weight
number of moles of SnF₂ = 5 / 157 = 0.03 moles
From the chemical reaction we see that 1 mole of SnF₂ are produced from 2 moles of SnF₂. This will mean that 0.03 moles of SnF₂ are produced from 0.06 moles of HF.
Now at standard temperature and pressure (STP) we can use the following formula to calculate the volume of HF:
number of moles = volume / 22.4 (L/mole)
volume of HF = number of moles × 22.4
volume of HF = 0.06 × 22.4 = 1.34 L
Learn more about:
problems with gases at STP
brainly.com/question/8857334
#learnwithBrainly
The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of hydrogen gas to be used in the reaction. This will be the starting point of the calculations.
24.0 mol H2 (2 mol NH3 / 3 mol H2 ) = 16 mol NH3
Therefore, ammonia produced from the reaction given is 16 moles.
Break down the table into smaller sections. Memories period by period or if you like by group (like halogens or noble gases).
Just say the elements in order everyday 1-10 then when you get those 11-20 and continued.
Answer:
<h3>Right answer is: ( a) chalk powder remains suspended in water.</h3>
Explanation:
Filtration is the technique used to separate suspended solute particles from a solution . The chalk powder remains suspended in the solution and can easily be filtered through a filter paper , the chalk powder can be collected on the filter paper and clear solvent is collected as the filtrate.