Answer:
maximum possible temperature is 34.088°C
Explanation:
Given data
power output Q = 37 kW
volume flow rate = 11 x 10^-5 m3/s
temperature t = 14°C
to find out
maximum possible temperature T
solution
we can say
total water volume = 4 residents × volume flow
total water volume = 4 × 11 x 10^-5 = 44 × 10^-5 m³/s
so we say total water mass = 1000 × volume
total water mass = 1000 kg/m³ × 44 × 10^-5
total water mass = 0.44 kg
we know
dQ/dt = (dm/dt)× (S)× ( T - t)
so here we know specific heat of water S = 4.186 joule/gram °C
37 = 0.44 × 4.186 × (T-14)
T = 34.088°C
maximum possible temperature is 34.088°C
Neglecting air resistance, the acceleration of the ball is
the acceleration of gravity ... 9.8 m/s² downward.
It doesn't matter what you toss, what it's mass is, what it weighs,
what color it is, how much it cost, what its shape or size is, how
fast you toss it, in what direction, or how long it's in the air.
Its horizontal acceleration is zero and its vertical acceleration
is 9.8 m/s² downward, from the moment it leaves your hand
until the moment somebody catches it or it hits the ground.
The magnitude of this vector is 15
A vector is a quantity or phenomenon that has two independent properties: magnitude and direction. The term also denotes the mathematical or geometrical representation of such a quantity. Examples of vectors in nature are velocity, momentum, force, electromagnetic fields, and weight.
The magnitude of a vector formula is used to calculate the length for a given vector (say v) and is denoted as |v|. So basically, this quantity is the length between the initial point and endpoint of the vector.
Let vector be = a
component of vector in x direction = 10 i
component of vector in y direction = 10 j
component of vector in z direction = 5 z
vector a = 10 i + 10 j + 5 z
magnitude of vector a = |a| =
= 15
To learn more about vector here
brainly.com/question/24256726
#SPJ4
To solve this problem we need the concepts of Energy fluency and Intensity from chemical elements.
The energy fluency is given by the equation

Where
The energy fluency
c = Activity of the source
r = distance
E = electric field
In the other hand we have the equation for current in materials, which is given by

Then replacing our values we have that


We can conclude in this part that 1.3*10^7Bq is the activity coming out of the cylinder.
Now the energy fluency would be,



The uncollided flux density at the outer surface of the tank nearest the source is 