Hi Pupil Here is your answer ::
➡➡➡➡➡➡➡➡➡➡➡➡➡
1 The shape of the Body
Example : The shape of the ball lying on a floor can be changed by pressing it.
2 Direction of the Body
Example : The direction of motion of moving ball can be changed by hitting it with a bat.
3 The speed of the Body
Example : A ball at rest can be set in motion if force is applied only
4. Size of the Body
Example : The length of a spring tied and on one end can be increased by pulling it.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this helps .......
Answer:
3.6 x 10⁶ Pa
Explanation:
A = Area of the heel = 1.50 cm² = 1.50 x 10⁻⁴ m²
m = mass of the woman = 55.0 kg
g = acceleration due to gravity = 9.8 m/s²
Force of gravity on the heel is given as
F = mg
Inserting the values
F = (55) (9.8)
F = 539 N
Pressure exerted on the floor is given as


P = 3.6 x 10⁶ Pa
The height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
<h3>Pressure and temperature at equilibrium </h3>
The relationship between pressure and temperature can be used to determine the height risen by the water.

where;
- V₁ = AL
- V₂ = A(L - y)
- P₁ = Pa
- P₂ = Pa + ρgh
- T₁ = 20⁰C = 293 K
- T₂ = 10⁰ C = 283 k

Thus, the height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
The complete question is below:
A diving bell is a 4.2 m -tall cylinder closed at the upper end but open at the lower end. The temperature of the air in the bell is 20 °C. The bell is lowered into the ocean until its lower end is 100 m deep. The temperature at that depth is 10°C. How high does the water rise in the bell after enough time has passed for the air to reach thermal equilibrium?
Learn more about thermal equilibrium here: brainly.com/question/9459470
#SPJ4
<h3>Reducing Surface Area.</h3>
If the surface area becomes smaller, the pressure becomes larger.