Answer: If there is a higher friction, the opposition force is higher so that it can reduce our speed. So, a factor that affects friction is the roughness or smoothness of the surface of the object. In comparison of the table with the fabric, the fabric will have a more opposition force. As the surface of the fabric is usually rougher than the surface of a smooth table. As there is more friction on a fabric, we will feel more opposition force on our finger tip.
Hope it helped! :>
Answer:

Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is calculated as:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it is important to also take into account the direction of the velocity.
For the particle in this problem, we have:
u = +48 m/s is the initial velocity (positive direction)
v = -92 m/s is the final velocity (negative direction)
t = 4.5 s is the time interval
Therefore, the average acceleration is

Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

Answer:
B can take 0.64 sec for the longest nap .
Explanation:
Given that,
Total distance = 350 m
Acceleration of A = 1.6 m/s²
Distance = 30 m
Acceleration of B = 2.0 m/s²
We need to calculate the time for A
Using equation of motion

Put the value in the equation



We need to calculate the time for B
Using equation of motion
Put the value in the equation



We need to calculate the time for longest nap
Using formula for difference of time



Hence, B can take 0.64 sec for the longest nap .