Answer: pure substances.
Explanation:
The given substances are:
All what surrounds us, which has mass and occupies spaces, is matter. There are two kind of matter: pure substances and mixtures.
Pure substances have a uniform and constant composition. On the other hand, mixtures are combinations of two or more pure substances in any arbitratry ratio.
Pure substances may be elements or compounds. The elements are the substances conmposed by one only kind of atom. In the list of substances given, Li and O₂ are elements: all the atoms in Li are lithium, and all the atoms in O₂ are oxygen atoms.
Compounds are the chemical combination of two or more different kind of atoms. In the given list H₂O₂ and NaCl are compounds. As you see, H₂O₂ contains atoms of hydrogen and oxygen, chemically bonded, in a fixed ratio (2 atoms of hydrogen by 2 atoms of oxygen). And NaCl has atoms of Na (sodium) and Cl (chlorine), chemicaly bonded, in a fixed ratio (1:1).
There are only 118 known elements and you can find them in any modern periodic table. Therer are virtually infinitely many compounds since many different combinations of the elements can be attained.
Elements and compounds have in common that they are classified as pure substances.
The changes that are common between sauce burning on a stove, and jewelry tarnishing, which is a chemical change.
How to define chemical and physical changes?
Chemical Change-
Any alteration that produces new chemical substances with distinct properties is considered a chemical change. Chemical reactions involve the rearrangement and recombination of elements and compounds to create new substances. Examples of chemical changes are listed below:
- Burning
- Digestion
- chemicals changing colors
- Tarnishing
- compost rotting
Physical Change-
A substance is not destroyed or transformed into something new by physical changes. A substance can undergo physical changes that alter its shape, size, or phase. The constituents of an element or compound do not change during a physical change. Examples of physical changes are listed below:
- Boiling water
- Chopping, Cutting, Carving
- Evaporation
- Freezing, Melting, Condensation
To know more about chemical and physical changes, visit the given link:
brainly.com/question/20628019
#SPJ4
Heating an atom excites its electrons and they jump to higher energy levels. When the electrons return to lower energy levels, they emit energy in the form of light. ... Every element has a different number of electrons and a different set of energy levels. Thus, each element emits its own set of colours.
Answer:
solvents dissolve in liquids
Explanation:
P1V1 = nRT1
P2V2 = nRT2
Divide one by the other:
P1V1/P2V2 = nRT1/nRT2
From which:
P1V1/P2V2 = T1/T2
(Or P1V1 = P2V2 under isothermal conditions)
Inverting and isolating T2 (final temp)
(P2V2/P1V1)T1 = T2 (Temp in K).
Now P1/P2 = 1
V1/V2 = 1/2
T1 = 273 K, the initial temp.
Therefore, inserting these values into above:
2 x 273 K = T2 = 546 K, or 273 C.
Thus, increasing the temperature to 273 C from 0C doubles its volume, assuming ideal gas behaviour. This result could have been inferred from the fact that the the volume vs temperature line above the boiling temperature of the gas would theoretically have passed through the origin (0 K) which means that a doubling of temperature at any temperature above the bp of the gas, doubles the volume.
From the ideal gas equation:
V = nRT/P or at constant pressure:
V = kT where the constant k = nR/P. Therefore, theoretically, at 0 K the volume is zero. Of course, in practice that would not happen since a very small percentage of the volume would be taken up by the solidified gas.