Answer:
v=20m/S
p=-37.5kPa
Explanation:
Hello! This exercise should be resolved in the next two steps
1. Using the continuity equation that indicates that the flow entering the nozzle must be the same as the output, remember that the flow equation consists in multiplying the area by the speed
Q=VA
for he exitt
Q=flow=5m^3/s
A=area=0.25m^2
V=Speed
solving for V

velocity at the exit=20m/s
for entry

2.
To find the pressure we use the Bernoulli equation that states that the flow energy is conserved.

where
P=presure
α=9.810KN/m^3 specific weight for water
V=speed
g=gravity
solving for P1

the pressure at exit is -37.5kPa
Answer:
Energy lost due to friction is 22 J
Explanation:
Mass of the ball m = 4 kg
Initially velocity of ball v = 6 m/sec
So kinetic energy of the ball 

Now due to friction velocity decreases to 5 m/sec
Kinetic energy become

Therefore energy lost due to friction = 72 -50 = 22 J
Answer: There is only one Sun in the galaxy … that is the thing that rises in the morning and sets at night. However, there is a use of “sun” to signify any old star … nobody knows exactly there might be trillions out there
Explanation:
Answer:
Velocity is the rate of motion in a specific direction. ... My velocity is 30 kilometers per hour that-a-way. Average speed is described as a measure of distance divided by time. Velocity can be constant, or it can change (acceleration).
Explanation:
Velocity is the rate of motion in a specific direction. ... My velocity is 30 kilometers per hour that-a-way. Average speed is described as a measure of distance divided by time. Velocity can be constant, or it can change (acceleration).