The force is going which ever way the person kicks the ball.
Here when car in front of us applied brakes then it is slowing down due to frictional force on it
So here we can say that friction force on the car front of our car is given as

So the acceleration of car due to friction is given as



now it is given that


so here we have


so the car will accelerate due to brakes by a = - 8.52 m/s^2
Answer:
Each part of the spectrum has a different range of wavelengths (which correspond to frequency, color, and energy) at which you can find it.
Answer:
acceleration or a deceleration
Explanation:
The gradient of a position - time graph represent the velocity.
a straight line indicate a constant velocity (gradient ≠ 0)
when it is a parallel line to the time axis , it indicated no movement
when it is a curved line it indicates a changing velocity (either acceleration or a deceleration) as mentioned in the graph
Answer:
Explanation:
Using ohm's law
a) V = IR where V is voltage in Volt, I is current in Ampere and R is resistance in ohms
R = V / I = 1.50 V/ ( 2.05 /1000) A = 731.71 ohms
b) Power = IV =
× v =
=
= 0.1107 W
c) E = IR + Ir = ( 731.71 × 0.0036) + ( 35 × 0.0036) = 2.76 V
d) Power use by the resistor = I²R = 0.0036² × 731.71 = 0.00948 W = 0.00948 W = 0.000009483 kw × ( 18 / 60 ) H = 2.84 × 10⁻⁶ KW-H