You need to find the acceleration . a=v-vo/t
a=6-10/4
a=-4/4
a=-1m/s/s or -1m/s^2
You’re welcome :)
Answer:
The answer is Conduction.
Explanation:
In the first scenario given in the question where the student is holding the marshmallows on the side of the flame, she is subjecting the marshmallow the a heat transfer by radiation since the marshmallow is not in direct contact with the fire.
Heat transfer by radiation is done so with the heating of the air between the object and the heat source and does not need any contact between the source and the heated material.
And later when she places the marshmallow over the flames, the heat transfer type she is observing is heat transfer by conduction.
I hope this answer helps.
The energy that transforms into kinetic energy is the Potential Energy. It happens that objects can store energy as a result of its position. Image for example a slingshot. When you stretch the slingshot, it stores energy, this energy would be the energy you used to stretch the slingshot, the material aborbs it and then release to throw the projectile.
Now, on earth and everywhere in the universe where you are close to an object with mass, it exists a force called gravity that attracts you towards that object. Every object that has mass exercises gravitational attration towards the other objects. It just happens that Earth is has so much mass that its gravitational pull is way stronger that the gravitational pull of another object on its surface. This means things will tend to be as close as earth as possible, and in order to move something away from earth, you will have to perform a force in the opposite direction to Earth and, therefore, consume energy. This energy will be store as potential energy, and when you drop the object, the potential energy will be the energy that will transform to kinetic energy.
Answer:
Explanation:
Total momentum of the system before the collision
.5 x 3 - 1.5 x 1.5 = -0.75 kg m/s towards the left
If v be the velocity of the stuck pucks
momentum after the collision = 2 v
Applying conservation of momentum
2 v = - .75
v = - .375 m /s
Let after the collision v be the velocity of .5 kg puck
total momentum after the collision
.5 v + 1.5 x .231 = .5v +.3465
Applying conservation of momentum law
.5 v +.3465 = - .75
v = - 2.193 m/s
2 ) To verify whether the collision is elastic or not , we verify whether the kinetic energy is conserved or not.
Kinetic energy before the collision
= 2.25 + 1.6875
=3.9375 J
kinetic energy after the collision
= .04 + 1.2 =1.24 J
So kinetic energy is not conserved . Hence collision is not elastic.
3 ) Change in the momentum of .5 kg
1.5 - (-1.0965 )
= 2.5965
Average force applied = change in momentum / time
= 2.5965 / 25 x 10⁻³
= 103.86 N
Answer:
d_2 = 4d_1
Explanation:
The range or horizontal distance covered by a projectile projected with a velocity U at an angel of θ to the horizontal is given by
R = U²sin2θ/g
Let the range or horizontal distance of ball 1 with initial velocity U projected at an angle θ = 55° be
d_1 = U²sin2θ/g
Let the range or horizontal distance of ball 2 with initial velocity V = 2U projected at an angle θ = 55° be
d_2 = V²sin2θ/g
= (2U)²sin2θ/g
= 4U²sin2θ/g
= 4d_1 (since d_1 = U²sin2θ/g)
So, the ball 2 lands a distance d_2 = 4d_1 from the initial point.