Chlorine is a halogen and is very reactive and unstable. If released in an elemental form (Cl2), it would react with other substances immediately. However, <span>chlorofluorocarbons (CFCs) which contain chlorine are unreactive and when released they eventually end up in the upper atmosphere still "intact". In the upper atmosphere, sunlight is more intense and is able to break apart CFC, releasing the highly reactive chlorine which in turns destroys ozone which is more abundant in the upper atmosphere (stratosphere). </span>
Answer:
1.) AgNO₃
2.) 0.563 moles AgBr
Explanation:
The limiting reagent is the reagent that is used up completely during a reaction. It can be identified by calculating which reactant produces the smallest amount of product. This can be done by determining the number of moles of each reagent (via molarity conversion). and then converting it to moles of the product (via mole-to-mole ratio).
AgNO₃ (aq) + KBr (aq) ---> AgBr (s) + KNO₃ (aq)
Molarity (M) = moles / liters
100 mL = 1 L
AgNO₃
45.0 mL / 100 = 45.0 L
1.25 M = ? moles / 0.450 L
? moles = 0.563 moles
KBr
75.0 mL / 100 = 0.750 L
0.800 M = ? moles / 0.750 L
? moles = 0.600 moles
In this case, there is no need to use the mole-to-mole ratio because all of the coefficients are one in the reaction (the amount of the limiting reagent used is the same amount of product produced). Since AgNO₃ produces the smaller amount of product, it is the limiting reagent.
5.22*22^3 should be the answer