Answer:
The current through the inductor at the end of 2.60s is 9.7 mA.
Explanation:
Given;
emf of the inductor, V = 41.0 mV
inductance of the inductor, L = 13 H
initial current in the inductor, I₀ = 1.5 mA
change in time, Δt = 2.6 s
The emf of the inductor is given by;

Therefore, the current through the inductor at the end of 2.60 s is 9.7 mA.
Answer:
A) if each astronaut breathes about 500 cm³, the total volume of air breathed in a year is 14716.8m³.
B) The Diameter of this spherical space station should be 30.4m
Explanation:
The breathing frequency (according to Rochester encyclopedia) is about 12-16 breath per minute. if we take the mean value (14 breath per minute), we can estimate the total breaths of a person along a year:

If we multiply this for the number of people in the station and the volume each breath needs, we obtain the volume breathed in a year.
The volume of a sphere is:

So the diameter is:
![D=2r=2\sqrt[3]{\frac{3V_{sph}}{4\pi}} =30.4m](https://tex.z-dn.net/?f=D%3D2r%3D2%5Csqrt%5B3%5D%7B%5Cfrac%7B3V_%7Bsph%7D%7D%7B4%5Cpi%7D%7D%20%3D30.4m)
<span>No, because the truck applies more pressure than the bridge can support.</span>
Answer:
Yes, it's correct
Explanation:
Newton's second Law states that the acceleration of an object is proportional to the net force applied on it, according to the equation:

where
F is the net force on the object
m is the mass of the object
a is the acceleration of the object
We can re-arrange the previous equation in order to solve explicitely for a, the acceleration, and we find:

So, we see that the acceleration is proportional to the net force and inversely proportional to the mass of the object.
Answer:
At point A, the cart has high potential energy. At point b, the cart is pulled down by gravity. At point c, the cart gains its highest kinetic energy. At point d, the cart returns back to the same state but with lower potential energy.