Answer:

Explanation:
Given data
Electric potential at point a is Ua=5.4×10⁻⁸J
q₂ moves to point b where a negative work done on it
Required
Electric potential energy Ub
Solution
When a particle moves from a point where the potential is Ua to a point where it is Ub the change in potential energy is equal to work done where the force exerted on the charge is conservative and work done is given by:

Now substitute the given values
So

Answer:
W = 222 N.
Explanation:
The qiestion says" If the acceleration of gravity on the surface of the planet Mercury is 3.7 m / s2, then what would be the weight of a person with mass 60 kg on its surface?
"
Mass of the person, m = 60 kg
The acceleration due to gravity on the surface of gravity is 3.7 m/s²
We need to find the weight of a person on the surface of Mercury.
Weight of an object is given by :
W = mg
So,
W = 60 kg × 3.7 m/s²
W = 222 N
Hence, the person will weigh 2222 N on the surface of Moon.
Answer:
817.5 Pa
Explanation:
From Bernoulli's equation, considering thst there is no height difference then
P1+½d(v1)²=P2+½d(v2)²
P1-P2=½d(v2²-v1²)
∆P=½d(v2²-v1²)
Where P represent pressure, d is density and v is velocity. Subscripts 1 and 2 represent inside and outside. ∆P is tge change in pressure
Given the speed at roof top as 128 km/h, we convert it to m/s as follows
128*1000/3600=35.555555555555=35.56 m/s
Velocity at the bottom of roof is 0 m/s
Density is given as 1.293 kg/m³
∆P=½*1.293*(35.56²-0)=817.5 Pa