Answer:
The percentage yield is 78.2g
Explanation:
Given, mass of propane = 42.8 g , sufficient O2 percent yield = 61.0 % yield.
Reaction - C3H8(g)+5O2(g)------> 3CO2(g)+4H2O(g)
First we need to calculate the moles of propane
Moles of propane =
g.mol-1
= 0.971 moles
So, moles of CO2 from the moles of propane
1 mole of C3H8(g) = 3 moles of CO2(g)
So, 0.971 moles of C3H8(g) = ?
= 2.913 moles of CO2
So theoretical yield = 2.913 moles
44.0 g/mol
= 128.2 g
So, the actual mass of CO2 = percent yield
theoretical yield / 100 %
= 61.0 %
128.2 g / 100 %
= 78.2 g
the mass of CO2 that can be produced if the reaction of 42.8 g of propane and sufficient oxygen has a 61.0 % yield is 78.2 g
Answer: A
Explanation:
A contour interval is a vertical distance or difference in elevation between contour lines. Index contours are bold or thicker lines that appear at every fifth contour line.
Isotope 1: 89.905 * 51.45 = 4625.61225 / 100 = 46.2561225
Isotope 2: 90.906 * 11.22 = 1019.96532 / 100 = 10.1996532
Isotope 3: 91.905 * 17.15 = 1576.17175 / 100 = 15.7617075
Isotope 4: 93.906 * 17.38 = 1632.08628 / 100 = 16.3208628
Isotope 5: 95.908 * 2.08 = 268.5424 / 100 = 2.685424
46.2561225 + 10.1996532 + 15.7617075 + 16.3208628 + 2.685424 = 91.22377
actual mass Zr = about 91.22
Answer:
The molarity of the HCl solution should be 4.04 M
Explanation:
<u>Step 1:</u> Data given
volume of HCl solution = 10.00 mL = 0.01 L
volume of a 1.6 M NaOH solution = 25.24 mL = 0.02524 L
<u>Step 2:</u> The balanced equation
HCl + NaOH → NaCL + H2O
Step 3: Calculate molarity of HCl
n1*C1*V1 = n2*C2*V2
Since the mole ratio for HCl and NaOH is 1:1 we can just write:
C1*V1 =C2*V2
⇒ with C1 : the molarity of HCl = TO BE DETERMINED
⇒ with V1 = the volume og HCl = 10 mL = 0.01 L
⇒ with C2 = The molarity of NaOH = 1.6 M
⇒ with V2 = volume of NaOH = 25.24 mL = 0.02524 L
C1 * 0.01 = 1.6 * 0.02524
C1 = (1.6*0.02524)/0.01
C1 = 4.04M
The molarity of the HCl solution should be 4.04 M
The reaction would produce bubbles of gas.
We can prepare 3-5 test tubes of acid with increasing concentrations. Then, we add antacid tablets to each and note the time taken for the tablet to dissolve and stop producing bubbles. The lesser the time taken, the greater the rate of reaction.