Answer:
Ka = 1.39x10⁻⁶
Explanation:
A monoprotic acid, HX, will be in equilibrium in an aqueous medium such as:
HX(aq) ⇄ H⁺(aq) + X⁻(aq)
<em>Where Ka is:</em>
Ka = [H⁺] [X⁻] / [HX]
<em>Where [] is the molar concentration in equilibrium of each specie.
</em>
The equilibrium is reached when some HX reacts producing H+ and X-, that is:
[HX] = 1.64M - X
[H⁺] = X
[X⁻] = X
As pH is 2.82 = -log [H⁺]:
[H⁺] = 1.51x10⁻³M:
[HX] = 1.64M - 1.51x10⁻³M = 1.638M
[H⁺] = 1.51x10⁻³M
[X⁻] = 1.51x10⁻³M
And Ka is:
Ka = [1.51x10⁻³M] [1.51x10⁻³M] / [1.638M]
<h3>Ka = 1.39x10⁻⁶</h3>
1bonding and 3non-bonding
(Refer to the attachment for structure
Answer: Option (b) is the correct answer.
Explanation:
As on increasing the temperature, the molecules gain more kinetic energy due to which they tend to collide and move rapidly from one place to another.
Thus, we can conclude that when temperature is increased, the kinetic energy of the molecules increases.
This means that temperature is directly proportional to the average kinetic energy of a gas.
Soluble means it can be dissolved
Insoluble means it can't be dissolved
Answer: On losing 6 moles of water, cobalt chloride forms unstable violet-coloured ions, before generating its stable blue-coloured anhydrous form.
Explanation:
The hydrated cobalt chloride loses its 6 water of crystallization, then dissociates into ions: cobalt ions and chlorine ions that appear violet, and quickly combined to form the stable anhydrous Cobalt chloride with blue colour.