1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
13

Geothermal energy generation uses what kind of turbine?

Physics
1 answer:
aliya0001 [1]3 years ago
6 0

Answer:

electromagnetic induction

Explanation:

Water or working fluid is heated (or used directly incase of geothermal dry steam power plants), and then sent through a steam turbine where the thermal energy (heat) is converted to electricity with a generator through a phenomenon called electromagnetic induction.

You might be interested in
A fire woman dropped a person onto the safety net. Right
dolphi86 [110]

Answer:

m = 28.7[kg]

Explanation:

To solve this problem we must use the definition of kinetic energy, which can be calculated by means of the following equation.

E_{k}=\frac{1}{2}*m*v^{2}\\

where:

Ek = kinetic energy = 1800 [J]

m = mass [kg]

v = 11.2 [m/s]

1800=\frac{1}{2}*m*(11.2)^{2}\\m = 28.7[kg]

7 0
3 years ago
Two identical 0.200kg mass are pressed against opposite ends of a light spring of force constant 1.75N/cm compressing the spring
arlik [135]

This type of a problem can be solved by considering energy transformations. Initially, the spring is compressed, thus having stored something called an elastic potential energy. This energy is proportional to the square of the spring displacement d from its normal (neutral position) and the spring constant k:

E_p=\frac{1}{2}kd^2= \frac{1}{2}175\frac{N}{m}\cdot 0.37^2m^2=11.98J

So, this spring is storing almost 12 Joules of potential energy. This energy is ready to be transformed into the kinetic energy when the masses are released. There are two 0.2kg masses that will be moving away from each other, their total kinetic energy after the release equaling the elastic energy prior to the release (no losses, since there is no friction to be reckoned with).

The kinetic energy of a mass m moving with a velocity v is given by:

E_k = \frac{1}{2}mv^2

And we know that the energies are conserved, so the two kinetic energies will equal the elastic potential one:

E_p = 2E_k=mv^2

From this we can determine the speed of the mass:

E_p =mv^2\implies v=\pm \sqrt{\frac{E_p}{m}}=\pm\sqrt{\frac{11.98J}{0.2kg}}=\pm 7.74\frac{m}{s}

The speed will be 7.74m/s in in one direction (+), and same magnitude in the opposite direction (-).

4 0
3 years ago
A golf ball is released from rest from the top of a very tall building. Choose a coordinate system whose origin is at the starti
Zigmanuir [339]

Answer:

Velocity of the ball after 3.04 (s) = 29.79 (m/s)

Explanation:

From the free fall movement we have the following formulas: Vf^{2} = Vo^{2} - 2gh and h=Vo*t - \frac{g*t^{2} }{2}, First we need to find the height to time iqual to 3.04 s using the formula: h=Vo*t - \frac{g*t^{2} }{2} and remember that golf ball was released from the rest (Vo= 0 (m/s)) so h= (0 (m/s))*(3.04 (s)) - \frac{9.8 (m/s^2)*(3.04 (s))^{2} }{2}, we get: h = -45.28 (m) with the height that we have got, now the velocity of the ball is calculate using Vf^{2} = Vo^{2} - 2gh solving for Vf, we get: Vf = \sqrt{Vo^{2}-2*g*h } replacing the values given Vf = \sqrt{(0 m/s)^{2}-2*(9.8 m/s^2)*(-45.28 m) }, so we get: Vf = 29.79 (m/s).

5 0
3 years ago
Read 2 more answers
Most reactive non-metals in order?
kompoz [17]
Nonmetals often share or gain electrons. The nonmetals in the periodic table increases as you move to the right and decreases as you go down. This is because, the smaller the atom, the reactive it gets due to less electron attached to the orbits of the atom. The reactivity of nonmetals is arranged in decreasing order.   <span>               
Carbon
</span> Nitrogen
Oxygen
Fluorine
Phosphorus <span>               
Sulfur</span>
Chlorine <span>               
Selenium</span> <span>               
Bromine</span> <span>               
Iodine</span>
5 0
3 years ago
Which of the following statements are true for magnetic force acting on a current-carrying wire in a uniform magnetic field? Che
qaws [65]

Answer:

The following statements are correct.

1. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.

2. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.

3. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.

Wrong statements:

1. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines.

Explanation:

6 0
3 years ago
Other questions:
  • Personality theorists often focus on _____________.
    8·1 answer
  • Machines
    7·2 answers
  • R = (2+2+1) i - (t+1)] + t3 k<br> what is the direction of initial velocity
    13·1 answer
  • Two resistors have resistances R(smaller) and R(larger), where R(smaller) &lt; R(larger). When the resistors are connected in se
    12·1 answer
  • A 5- kg object experiences forces as shown in the diagram. Which statement best describes the motion of the object
    11·1 answer
  • 57. A red ball (m= 10 kg) is moving at 3 m/s. A green ball (m = 8 kg) is moving at 3.5 m/s. Which ball has more
    7·1 answer
  • Decelerating cor, driver having taken his foot off the accelerator and applying <br>brakes​
    6·1 answer
  • What is artificial insemination as used in animal production
    8·1 answer
  • if force accelerate mass with acceleration and the same force accelerate the mass which is quarter of the first one by​
    15·1 answer
  • 5. How far can a car travel in 14 hours while going at a speed of 75 miles per hour?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!