Because the elevator moves at a constant speed, it's in equilibrium and the net force acting on it is zero. Then the tension in the cable exactly equals the magnitude of the elevator's weight, which is
(3000 kg) (9.80 m/s²) = 29,400 N
consider the motion in x-direction
= initial velocity in x-direction = ?
X = horizontal distance traveled = 100 m
= acceleration along x-direction = 0 m/s²
t = time of travel = 4.60 sec
Using the equation
X =
t + (0.5)
t²
100 =
(4.60)
= 21.7 m/s
consider the motion along y-direction
= initial velocity in y-direction = ?
Y = vertical displacement = 0 m
= acceleration along x-direction = - 9.8 m/s²
t = time of travel = 4.60 sec
Using the equation
Y =
t + (0.5)
t²
0 =
(4.60) + (0.5) (- 9.8) (4.60)²
= 22.54 m/s
initial velocity is given as
= sqrt((
)² + (
)²)
= sqrt((21.7)² + (22.54)²) = 31.3 m/s
direction: θ = tan⁻¹(22.54/21.7) = 46.12 deg
Vapor pressure<span> or equilibrium </span>vapor pressure<span> is defined as the </span>pressure<span> exerted by a </span>vapor<span> in thermodynamic equilibrium with its condensed phases at a certain temperature. It is independent with atmospheric pressure since it does not change by changing the atmospheric pressure only. </span>
Answer:
c
Explanation:
It light wave will travel at speed of light and go faster in its wavelength
Answer:
0.78 m
Explanation:
By the conservation of energy, the energy that they gain from potential energy, must be equal to the kinetic energy. So, for Adolf:
Ep = Ek
ma*g*ha = ma*va²/2
Where ma is the mass of Adolf, g is the gravity acceleration (10 m/s²), ha is the height that he reached, and va is the velocity. So:
100*10*0.51 = 100*va²/2
50va² = 510
va² = 10.2
va = √10.2
va = 3.20 m/s
Before the push, both of them are in rest, so the momentum must be 0. The system is conservative, so the momentum after the push must be equal to the momentum before the push:
ma*va + me*ve = 0, where me and ve are the mass and velocity of Ed. So:
100*3.20 + 81ve = 0
81ve = 320
ve = 3.95 m/s
By the conservation of energy for Ed:
me*g*he = me*ve²/2
81*10*he = 81*(3.95)²/2
810he = 631.90
he = 0.78 m