The specific heat capacity of the given substance is -0.66 J/g°C.
<u>Explanation:</u>
The heat absorbed by any substance is the product of its mass, specific heat capacity and change in temperature.
q = m × c × ΔT
m is the mass in grams
q = amount of heat released or absorbed in J
ΔT = change in temperature in °C = 5 -50 = -45°C
c = specific heat capacity in J/g°C
c =
Plugin the values, we will get,
c =
= -0.66 J/g°C
Answer : The standard enthalpy of formation of ethylene is, 51.8 kJ/mole
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The formation reaction of will be,
The intermediate balanced chemical reaction will be,
(1)
(2)
(3)
Now we will reverse the reaction 1, multiply reaction 2 and 3 by 2 then adding all the equations, we get :
(1)
(2)
(3)
The expression for enthalpy of formation of will be,
Therefore, the standard enthalpy of formation of ethylene is, 51.8 kJ/mole
We have that energy=specific heat * change in temperature * mass. Thus, we have the final temperature (22) minus the initial temperature (55) to equal -33 as our change in temperature. Our specific heat is in J/g*C, so we're good with that because g stands for grams and the aluminium is measured in grams. As there are 10 grams of aluminum, we have
as our final temperature
An exothermic reaction would release energy and would therefore lose heat itself, while an endothermic reaction would absorb energy and gain heat. Therefore, losing heat would be an exothermic reaction
Feel free to ask further questions!
Recorded by a seismograph.