1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sasho [114]
3 years ago
15

A brass alloy is known to have a yield strength of 275 MPa (40,000 psi), a tensile strength of 380 MPa (55,000 psi), and an elas

tic modulus of 103 GPa (15.0×106 psi). A cylindrical specimen of this alloy 5.5 mm (0.22 in.) in diameter and 267 mm (10.52 in.) long is stressed in tension and found to elongate 7.0 mm (0.28 in.). On the basis of the information given, is it possible to compute the magnitude of the load that is necessary to produce this change in length? If not, explain why.
Engineering
2 answers:
Ugo [173]3 years ago
7 0

Answer:

Computation of the load is not possible because E(test) >E(yield)

Explanation:

We are asked to ascertain whether or not it is possible to compute, for brass, the magnitude of the load necessary to produce an elongation of 7.0 mm (0.28 in.). It is first necessary/ important to compute the strain at yielding from the yield strength and the elastic modulus, and then the strain experienced by the test specimen. Then, if

E(test) is less than E(yield), deformation is elastic and the load may be computed. However is E(test) is greater than E(yield) computation/determination of the load is not possible even though defamation is plastic and we have neither a stress-strain plot or a mathematical relating plastic stress and strain. Therefore, we can compute these two values as:

Calculation of E(test is as follows)

E(test) = change in l/lo= Elongation produced/stressed tension= 7.0mm/267mm

=0.0262

Computation of E(yield) is given below:

E(yield) = σy/E=275Mpa/103 ×10^6Mpa= 0.0027

Therefore, we won't be able to compute the load because for computation to take place, E(test) <E(yield). In this case, E(test) is greater than E(yield).

frosja888 [35]3 years ago
5 0

Answer:

It's not possible to compute the magnitude of the load

Explanation:

Given data:

Yield strength = 275Mpa

Tensile strength = 380Mpa

Elastic modulus = 103Gpa = 103 * 1000MPa

Diameter = 5.5 mm

Length = 267 mm

Elongation = 7.0 mm

Calculating the strain test value using the formula'

<h3>ε(test) = ΔL/Lo</h3>

Substituting, we have

ε = 7.0/267

  =  0.0262

Calculating the yield strain using the formula

<h3>ε(yield) = бy/E </h3>

Substituting, we have

ε(yield) = 275/ 103 * 1000

             = 275/103000

            = 0.00267

From the calculation above, the strain test is greater than the yield. Therefore, it's not possible to compute the magnitude of the load.

<h3>ε(test) ⊃  ε(yield)</h3><h3></h3>
You might be interested in
A Pelton wheel is supplied with water from a lake at an elevation H above the turbine. The penstock that supplies the water to t
gayaneshka [121]

Answer:

Following are the proving to this question:

Explanation:

\frac{D_1}{D} = \frac{1}{(2f(\frac{l}{D}))^{\frac{1}{4}}}

using the energy equation for entry and exit value :

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  = \frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g}

where

\to p_0=p_1=0\\\\\to Z_0=Z_1=H\\\\\to v_0=0\\\\AV =A_1V_1 \\\\\to V=(\frac{D_1}{D})^2 V_1\\\\\to V^2=(\frac{D_1}{D})^4 V^{2}_{1}

         = (\frac{1}{(2f (\frac{l}{D} ))^{\frac{1}{4}}})^4\  V^{2}_{1}\\\\

         = \frac{1}{(2f (\frac{l}{D})  )} \  V^{2}_{1}\\

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  =\frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g} \\\\

\to 0+0+Z_0 = 0  +\frac{V^{2}_{1} }{2g} +Z_1+ f \frac{l}{D} \frac{\frac{1}{(2f(\frac{l}{D}))}\ V^{2}_{1}}{2g}   \\\\\to Z_0 -Z_1 = +\frac{V^{2}_{1}}{2g} \ (1+f\frac{l}{D}\frac{1}{(2f(\frac{l}{D}) )} )  \\\\\to H= \frac{V^{2}_{1}}{2g} (\frac{3}{2}) \\\\\to  \frac{V^{2}_{1}}{2g} = H(\frac{3}{2})

L.H.S = R.H.S

7 0
3 years ago
11–17 A long, thin-walled double-pipe heat exchanger with tube and shell diameters of 1.0 cm and 2.5 cm, respectively, is used t
lana [24]

Answer:

the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C

Explanation:

Given:

d₁ = diameter of the tube = 1 cm = 0.01 m

d₂ = diameter of the shell = 2.5 cm = 0.025 m

Refrigerant-134a

20°C is the temperature of water

h₁ = convection heat transfer coefficient = 4100 W/m² K

Water flows at a rate of 0.3 kg/s

Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?

First at all, you need to get the properties of water at 20°C in tables:

k = 0.598 W/m°C

v = 1.004x10⁻⁶m²/s

Pr = 7.01

ρ = 998 kg/m³

Now, you need to calculate the velocity of the water that flows through the shell:

v_{w} =\frac{m}{\rho \pi (\frac{d_{2}^{2}-d_{1}^{2}  }{4} )} =\frac{0.3}{998*\pi (\frac{0.025^{2}-0.01^{2}  }{4}) } =0.729m/s

It is necessary to get the Reynold's number:

Re=\frac{v_{w}(d_{2}-d_{1}) }{v} =\frac{0.729*(0.025-0.01)}{1.004x10^{-6} } =10891.4343

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

Nu=0.023Re^{0.8} Pr^{0.4} =0.023*(10891.4343)^{0.8} *(7.01)^{0.4} =85.0517

The overall heat transfer coefficient:

Q=\frac{1}{\frac{1}{h_{1} }+\frac{1}{h_{2} }  }

Here

h_{2} =\frac{kNu}{d_{2}-d_{1}} =\frac{0.598*85.0517}{0.025-0.01} =3390.7278W/m^{2}C

Substituting values:

Q=\frac{1}{\frac{1}{4100}+\frac{1}{3390.7278}  } =1855.8923W/m^{2} C

5 0
3 years ago
The 150-lb man sits in the center of the boat, which has a uniform width and a weight per linear foot of 3 lb&gt;ft. Determine t
irina1246 [14]

Answer:

M = 281.25 lb*ft

Explanation:

Given

W<em>man</em> = 150 lb

Weight per linear foot of the boat: q = 3 lb/ft

L = 15.00 m

M<em>max</em> = ?

Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):

∑ Fy = 0  (+↑)     ⇒    q'*L - W - q*L = 0

⇒       q' = (W + q*L) / L

⇒       q' = (150 lb + 3 lb/ft*15 ft) / 15 ft

⇒       q' = 13 lb/ft   (+↑)

The free body diagram of the boat is shown in the pic.

Then, we apply the following equation

q(x) = (13 - 3) = 10   (+↑)

V(x) = ∫q(x) dx = ∫10 dx = 10x   (0 ≤ x ≤ 7.5)

M(x) = ∫10x dx = 5x²  (0 ≤ x ≤ 7.5)

The maximum internal bending moment occurs when x = 7.5 ft

then

M(7.5) = 5(7.5)² = 281.25 lb*ft

8 0
3 years ago
Anna makes arrangements to reuse waste water that has been used in sinks and showers. Which term refers to the waste water that
victus00 [196]

Answer:

Greywater.

Explanation:

Greywater is also known as sullage and it can be defined as any form of gently used wastewater derived from sources within a residential or office building such as showers, washing machines, bathroom sinks, bathroom tub, etc.

Generally, greywater or sullage is completely free of fecal materials (faeces) because it is independent from all toilet activities. However, greywater is not clean for direct use because it usually contains food particles, dirt, oil from dishes, hair, etc.

In this scenario, Anna makes arrangements to reuse waste water that has been used in sinks and showers. Greywater is a term which refers to the waste water that Anna reuses to conserve resources.

Therefore, Anna reuses greywater to conserve resources.

8 0
3 years ago
Ruler game, HELPPPPP
viktelen [127]
D! :D
Hope I helped!!
3 0
2 years ago
Read 2 more answers
Other questions:
  • An alloy has a yield strength of 818 MPa and an elastic modulus of 104 GPa. Calculate the modulus of resilience for this alloy [
    13·1 answer
  • A receptacle, plug, or any other electrical device whose design limits the ability of an electrician to come in contact with any
    14·1 answer
  • Disc brake rotors that are too thin cannot handle as much heat and will experience ___________.
    6·1 answer
  • What is the difference between CNC and NC​
    15·1 answer
  • DO NOW: Name the three main legal categories of ownership.
    12·1 answer
  • Air,in a piston cylinder assembly, is initially at 300 K and 200 kPa.It is then heated at constant pressure to 600 K. Determine
    12·2 answers
  • Where can you find free air pods that look real
    8·1 answer
  • List two skills that are useful when working in teams.
    11·2 answers
  • Explain the concept of energy conversion as applied to the generation of electricity also known as electrical energy​
    9·1 answer
  • At time t the resultant force on a particle, of mass 250kg is (300ti-400tj)N. Initially, the particle is at the origin and is mo
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!