Answer:
a)
, b)
,
,
, c)
,
,
, ![\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%20%2B%20%5Csqrt%7B2%7D%20%7D%7B6000%7D%5C%2Ch)
Explanation:
a) The total number of users that can be accomodated in the system is:
![n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B10%5C%2Ckm%5E%7B2%7D%7D%7B1%5C%2C%5Cfrac%7Bkm%5E%7B2%7D%7D%7Bcell%7D%20%7D%5Ccdot%20%28100%5C%2C%5Cfrac%7Busers%7D%7Bcell%7D%20%29)
![n = 1000\,users](https://tex.z-dn.net/?f=n%20%3D%201000%5C%2Cusers)
b) The length of the side of each cell is:
![l = \sqrt{1\,km^{2}}](https://tex.z-dn.net/?f=l%20%3D%20%5Csqrt%7B1%5C%2Ckm%5E%7B2%7D%7D)
![l = 1\,km](https://tex.z-dn.net/?f=l%20%3D%201%5C%2Ckm)
Minimum time for traversing a cell is:
![\Delta t_{min} = \frac{l}{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7Bl%7D%7Bv%7D)
![\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7B1%5C%2Ckm%7D%7B30%5C%2C%5Cfrac%7Bkm%7D%7Bh%7D%20%7D)
![\Delta t_{min} = \frac{1}{30}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%5C%2Ch)
The maximum time for traversing a cell is:
![\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmax%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%5Ccdot%20l%20%7D%7Bv%7D)
![\Delta t_{max} = \frac{\sqrt{2} }{30}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmax%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%20%7D%7B30%7D%5C%2Ch)
The approximate time is giving by the average of minimum and maximum times:
![\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%2B%5Csqrt%7B2%7D%20%7D%7B2%7D%5Ccdot%5Cfrac%7Bl%7D%7Bv%7D)
![\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%20%2B%20%5Csqrt%7B2%7D%20%7D%7B60%7D%5C%2Ch)
c) The total number of users that can be accomodated in the system is:
![n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B10%5Ctimes%2010%5E%7B6%7D%5C%2Cm%5E%7B2%7D%7D%7B100%5C%2Cm%5E%7B2%7D%7D%5Ccdot%20%28100%5C%2C%5Cfrac%7Busers%7D%7Bcell%7D%20%29)
![n = 10000000\,users](https://tex.z-dn.net/?f=n%20%3D%2010000000%5C%2Cusers)
The length of each side of the cell is:
![l = \sqrt{100\,m^{2}}](https://tex.z-dn.net/?f=l%20%3D%20%5Csqrt%7B100%5C%2Cm%5E%7B2%7D%7D)
![l = 10\,m](https://tex.z-dn.net/?f=l%20%3D%2010%5C%2Cm)
Minimum time for traversing a cell is:
![\Delta t_{min} = \frac{l}{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7Bl%7D%7Bv%7D)
![\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7B0.01%5C%2Ckm%7D%7B30%5C%2C%5Cfrac%7Bkm%7D%7Bh%7D%20%7D)
![\Delta t_{min} = \frac{1}{3000}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7B1%7D%7B3000%7D%5C%2Ch)
The maximum time for traversing a cell is:
![\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmax%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%5Ccdot%20l%20%7D%7Bv%7D)
![\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmax%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%20%7D%7B3000%7D%5C%2Ch)
The approximate time is giving by the average of minimum and maximum times:
![\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%2B%5Csqrt%7B2%7D%20%7D%7B2%7D%5Ccdot%5Cfrac%7Bl%7D%7Bv%7D)
![\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%20%2B%20%5Csqrt%7B2%7D%20%7D%7B6000%7D%5C%2Ch)
Explanation:
Given T = 10 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (10 + 273.15) K = 283.15 K
<u>T = 283.15 K </u>
The conversion of T( °C) to T(F) is shown below:
T (°F) = (T (°C) × 9/5) + 32
So,
T (°F) = (10 × 9/5) + 32 = 50 °F
<u>T = 50 °F</u>
The conversion of T( °C) to T(R) is shown below:
T (R) = (T (°C) × 9/5) + 491.67
So,
T (R) = (10 × 9/5) + 491.67 = 509.67 R
<u>T = 509.67 R</u>
Answer:
The mass flow rate of the mixture in the manifold is 6.654 kg/min
Explanation;
In this question, we are asked to calculate mass flow rate of the mixture in the manifold
Please check attachment for complete solution and step by step explanation.
Answer:
The constant here is the study outline
Explanation:
In scientific research, the constant variable is that part/variable of the experiment that does not change or is set not to change. Examples include temperature, environment or height.
Assuming the scenery described in this question is an experiment. All the groups presented are bound by a constant during the experiment. The constant here is the study outline. The study outline provided to the students is not going to change.
NOTE: There could be confusion as regards the answer being the final exam grade but that will be the dependent variable as that will be the outcome of the experiment while the time spent to study will be the independent variable.