Answer:
I attached a photo of balanced equations but thats as much as I can help.
Explanation:
Answer:
We need 4.28 grams of sodium formate
Explanation:
<u>Step 1:</u> Data given
MW of sodium formate = 68.01 g/mol
Volume of 0.42 mol/L formic acid = 150 mL = 0.150 L
pH = 3.74
Ka = 0.00018
<u>Step 2:</u> Calculate [base)
3.74 = -log(0.00018) + log [base]/[acid]
0 = log [base]/[acid]
0 = log [base] / 0.42
10^0 = 1 = [base]/0.42 M
[base] = 0.42 M
<u>Step 3:</u> Calculate moles of sodium formate:
Moles sodium formate = molarity * volume
Moles of sodium formate = 0.42 M * 0.150 L = 0.063 moles
<u>Step 4:</u> Calculate mass of sodium formate:
Mass sodium formate = moles sodium formate * Molar mass sodium formate
Mass sodium formate = 0.063 mol * 68.01 g/mol
Mass sodium formate = 4.28 grams
We need 4.28 grams of sodium formate
The compound sodium carbonate is a strong electrolyte because it completely dissociates when placed in water into its component ions. The equation of the reaction can be expressed as:

The dissociation leads to the formation of sodium and carbonate ions with the latter held together by its internal covalent bond.
This is unlike weak electrolytes that do not dissociate completely in water or aqueous solutions. Only a small fraction of the solute exists as ions in the solution.
More on strong and weak electrolytes can be found here: brainly.com/question/3410548
Explanation:
"Compound: A substance that is made up of more than one type of atom bonded together.
Mixture: A combination of two or more elements or compounds which have not reacted to bond together; each part in the mixture retains its own properties."
- Libre Texts