Answer:
0.805 M.
Explanation:
Hello!
In this case, since the molarity of a solution is computing by dividing the moles of solute over the volume of solution in liters (M=n/V), for 15.0 g of potassium chloride (74.55 g/mol) we compute the corresponding moles:

Next, since the volume is 0.2500 in liters, the molarity turns out:

Best regards!
Electrons in an atom can be classified as core electrons and valence electrons. Valence electrons are those electrons which are present in valence shell and participates in bond formation. While, Core electrons are all remaining electrons which are not present in valence shell, hence not take part in bonding.
Atomic number of Selenium (Se) is 34 hence it has 34 electrons with following electronic configuration;
1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁴
From electronic configuration it is found that the valence shell is 4, and the number of electrons present in valence shell are 6. So,
Core Electrons = Total Electrons - Valence Electrons
Core Electrons = 34 - 6
Core Electrons = 28
Result:
There are 28 core electrons in Selenium.
Answer:
mass of HCl = 3.65 g
Explanation:
Data Given:
Moles of hydrochloric acid HCl = 0.1 mole
Mass in grams of hydrochloric acid HCl = ?
Solution:
Mole Formula
no. of moles = Mass in grams / molar mass
To find Mass in grams rearrange the above Formula
Mass in grams = no. of moles x molar mass . . . . . . . (1)
Molar mass of HCl = 1 + 35.5 = 36.5 g/mol
Put values in equation 1
Mass in grams = 0.1 mole x 36.5 g/mol
Mass in grams = 3.65 g
mass of HCl = 3.65 g
Answer:
The component that dissolves the other component is called the solvent. Solute – The component that is dissolved in the solvent is called solute