The possible magnitude for the force of static friction on the stationary cart is 72.1 N.
The given parameters:
- <em>Applied force on the cart, F = 72.1 N</em>
<em />
Based on Newton's second law of motion, the force applied to object is directly proportional to the product of mass and acceleration of the object.
F = ma
Static frictional force is the force resisting the motion of an object at rest.

where;
is the frictional force

Thus, the possible magnitude for the force of static friction on the stationary cart is 72.1 N.
Learn more about Newton's second law of motion: brainly.com/question/25307325
Answer:
v = 1.98 mph
Explanation:
Given that,
Speed to travel one mile is 100 mph
Speed to travel another mile is 1 mph
The formula used to find your average speed is given by :

Putting the values, we get :

v = 1.98 mph
So, yours average speed is 1.98 mph.
Σf = m a
Σf = m v^2 / r
Σf = 52 8^2 / 1.6
Σf = 2080 N
The complete sentence is:
A calorimeter directly measures changes in temperature in order to calculate specific heat.
In fact, the amount of energy acquired/released by a substance is directly proportional to its change in temperature due to the equation

where Q is the amount of energy, m is the mass of the substance, Cs is the specific heat of the substance and
is the change in temperature. Therefore, by knowing Q, m and by measuring the change in temperature, it is possible to calculate Cs, the specific heat capacity of the substance.
Answer:
b)determining the electric field due to each charge and adding them together as vectors.
Explanation:
The electric Field is a vector quantity, in other words it has a magnitude and a direction. On the other hand, the electric field follows the law of superposition. The electric field produced by two elements is equal to the sum of the electric fields produced by each element when the other element is not present. in other words, the total electric field is solved determining the electric field due to each charge and adding them together as vectors.