A. Radioactive decay does not result in heat. Gravity also does not result in heat. In the Earth's mantle, it is highly unlikely that the radiation from the sun would reach that deep into the earth.
Answer:
F = 29.9 N
Explanation:
It is given that, The Sun exerts a gravitational force of 29.9 N on a rock that's located in a river bed here on Earth. We need to find the gravitational force the rock exert on the Sun. It is a case of Newton's third law of motion which states that the force acting from one object to another is equal to the force acing from second object to the first object and the two forces must be in opposite direction. Hence, the gravitational force the rock exert on the Sun is same i.e. 29.9 N.
This question is incomplete, the complete question is;
A football quarterback throws a 0.408 kg football for a long pass. While in the motion of throwing, the quarterback moves the ball 1.909 m, starting from rest, and completes the motion in 0.439 s. Assuming the acceleration is constant, what force does the quarterback apply to the ball during the pass
;
a) F_throw = 8.083 N
b) F_throw = 9.181 N
c) F_throw = 2.284 N
d) F_throw = 16.014 N
e) None of these is correct
Answer:
the quarterback applied a force of 8.083 N to the ball during the pass
so Option a) F_throw = 8.083 N is the correct answer
Explanation:
Given that;
m = 0.408 kg
d = 1.909 m
u = 0 { from rest}
t = 0.439 s
Now using Kinetic equation
d = ut + 1/2 at²
we substitute
1.909 = (0 × 0.439) + 1/2 a(0.439)²
1.909 = 0 + 0.09636a
1.909 = 0.09636a
a = 1.909 / 0.09636
a = 19.8111 m/s²
Now force applied will be;
F = ma
we substitute
F = 0.408 × 19.8111
F = 8.0828 ≈ 8.083 N
Therefore the quarterback applied a force of 8.083 N to the ball during the pass
so Option a) F_throw = 8.083 N is the correct answer
Answer:
please find the attachment to this question.
Explanation:
In this question, we represent the 100N in the North-East direction, but first, we define the vector representation:
It is generally represented through arrows, whose length and direction reflect the magnitude and direction of the arrow points. In this, both size and direction are necessary because the magnitude of a vector would be a number that can be compared to one vector.
Please find the attachment:
Answer: 77 degrees
Explanation:
According to the Law of Reflection, when a ray of light strikes a surface, the angle of this ray (incident ray) with respect to the normal of the surface is equal to the angle that forms the reflected ray with the same normal of the surface.
In other words:
Both the incident ray and the reflected ray and the normal to the surface are in the same plane, in addition, the angle of the incident ray is equal to the angle of the reflected ray.
In this context, if the angle of incidence is 77 degrees, the angle of reflection is 77 degrees, as well.