The ideal gas law may be written as

where
p = pressure
ρ =density
T = temperature
M = molar mass
R = 8.314 J/(mol-K)
For the given problem,
ρ = 0.09 g/L = 0.09 kg/m³
T = 26°C = 26+273 K = 299 K
M = 1.008 g/mol = 1.008 x 10⁻³ kg/mol
Therefore

Note that 1 atm = 101325 Pa
Therefore
p = 2.2195 x 10⁵ Pa
= 221.95 kPa
= (2.295 x 10⁵)/101325 atm
= 2.19 atm
Answer:
2.2195 x 10⁵ Pa (or 221.95 kPa or 2.19 atm)
Answer:
a) 1.866 × 10 ⁻¹⁹ J b) 3.685 × 10⁻¹⁹ J
Explanation:
the constants involved are
h ( Planck constant) = 6.626 × 10⁻³⁴ m² kg/s
Me of electron = 9.109 × 10 ⁻³¹ kg
speed of light = 3.0 × 10 ⁸ m/s
a) the Ek ( kinetic energy of the dislodged electron) = 0.5 mu²
Ek = 0.5 × 9.109 × 10⁻³¹ × ( 6.40 × 10⁵ )² = 1.866 × 10 ⁻¹⁹ J
b) Φ ( minimum energy needed to dislodge the electron ) can be calculated by this formula
hv = Φ + Ek
where Ek = 1.866 × 10 ⁻¹⁹ J
v ( threshold frequency ) = c / λ where c is the speed of light and λ is the wavelength of light = 358.1 nm = 3.581 × 10⁻⁷ m
v = ( 3.0 × 10 ⁸ m/s ) / (3.581 × 10⁻⁷ m ) = 8.378 × 10¹⁴ s⁻¹
hv = 6.626 × 10⁻³⁴ m² kg/s × 8.378 × 10¹⁴ s⁻¹ = 5.551 × 10⁻¹⁹ J
5.551 × 10⁻¹⁹ J = 1.866 × 10 ⁻¹⁹ J + Φ
Φ = 5.551 × 10⁻¹⁹ J - 1.866 × 10 ⁻¹⁹ J = 3.685 × 10⁻¹⁹ J
Answer
B. acid + base --> salt + water
Explanation
Acids are substances that dissolve in water to produce hydrogen ions, H+.A base is a substance that dissolves in water to produce hydroxide ions, OH-.In a chemical reaction of an acid and a base, the products are a salt and water.For example when hydrocholoric acid is added to sodium hydroxide, a salt namely sodium chloride is formed with additional water.
Answer:
212 degrees F, and 100 degrees C.
Explanation:
If the temperature is held constant (which requires some heat input, since evaporation cools things) the liquid will all evaporate. If the temperature is much above 212 F, the water will boil. That means that it wont just evaporate from the surface but will form vapor bubbles, which then grow, inside the liquid itself. :)
Answer:
A) ψ² describes the probability of finding an electron in space.
Explanation:
The Austrian physicist Erwin Schrödinger formulated an equation that describes the behavior and energies of submicroscopic particles in general.
The Schrödinger equation i<u>ncorporates both particle behavior</u>, in terms of <u>mass m</u>, and wave behavior, in terms of a <u><em>wave function ψ</em></u>, which depends on the location in space of the system (such as an electron in an atom).
The probability of finding the electron in a certain region in space is proportional to the square of the wave function, ψ². According to wave theory, the intensity of light is proportional to the square of the amplitude of the wave, or ψ². <u>The most likely place to find a photon is</u> where the intensity is greatest, that is, <u>where the value of ψ² is greatest</u>. A similar argument associates ψ² with the likelihood of finding an electron in regions surrounding the nucleus.