Answer:
The velocity of block = 0.188 
Explanation:
Mass m = 5.6 kg
k = 1040 
= 0.26
0.035 m ,
= 0
0.02 m
From work energy theorem
--------- (1)
Kinetic energy
------- (1)
Potential energy
------- (2)
Work done
W = F.s ------ (3)
From Newton's second law
= mg
= 5.6 × 9.81 = 54.9 N
Friction force = 0.4 × 54.9 = 21.9 N
Now the work done by the friction
= - 21.9 × 0.015
= - 0.329 J
Now kinetic energy
At point 1




0.637 J
At point 2


Potential energy


J
From equation (1) we get
0 + 0.637 - 0.329 = 2.8
+ 0.208
2.8
= 0.1
0.188 
This is the velocity of block.
Answer:
Transfer of molecules due to density-difference resulting from increased temperature of the layers of fluid bulk leads to convection.
Explanation:
When a mass of fluid is heated form the lower layers then due to the variation of the density of the fluid at different temperature we observe the movement of molecules leading to convection.
- When the lowest level of the fluid is heated it gains temperature and the molecular bulk expands on heating and its density becomes low with respect to the bulk fluid around it and hence it flows upwards to the top most layer being lighter in weight and the lowest layer is occupied by the subsequent colder and denser layer.
- Then again the lowest layer is heated and the process continues forming a cycle heating through the bulk transfer of fluid layers called convention.
The statement which summarizes cellular respiration is Oxygen reacts with glucose to produce carbon dioxide and water, and release energy.
<h3>What is cellular respiration?</h3>
Cellular respiration is the process by which food, in the form of glucose is transformed into energy within cells.
The food is prepared by the plants by the process of photosynthesis in presence of sunlight. This food is in the form of glucose.
The respiration of plants is done by breaking of glucose by absorbing oxygen. This produces carbon- di- oxide and water along with the release of energy.
Thus, the cellular respiration is oxygen reacts with glucose to produce carbon dioxide and water, and release energy.
Learn more about cellular respiration.
brainly.com/question/13721588
#SPJ1
Explanation:
We'll need two equations.
v² = v₀² + 2a(x - x₀)
where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.
x = x₀ + ½ (v + v₀)t
where t is time.
Given:
v = 47.5 m/s
v₀ = 34.3 m/s
x - x₀ = 40100 m
Find: a and t
(47.5)² = (34.3)² + 2a(40100)
a = 0.0135 m/s²
40100 = ½ (47.5 + 34.3)t
t = 980 s
(a) 0.714 cm
First of all, we need to find the spring constant of the spring. This can be done by using Hooke's law:

where
F is the force applied on the spring
k is the spring constant
x is the stretching of the spring
At the beginning, the force applied is the weight of the block of m = 4.20 kg hanging on the spring, therefore:

The stretching of the spring due to this force is
x = 2.00 cm = 0.02 m
Therefore, the spring constant is

Now, a new object of 1.50 kg is hanging on the spring instead of the previous one. So, the weight of this object is

And so, the stretching of th spring in this case is

(b) 1.65 J
The work done on a spring is given by:

where
k is the spring constant
x is the stretching of the spring
In this situation,
k = 2060 N/m
x = 4.00 cm = 0.04 m is the stretching due to the external agent
So, the work done is
