A Biochemist is a type of chemist understands the structure of living systems and, in turn, their functions and ways to control them.
<h3>What is the chemistry of living systems called?</h3>
The chemistry of living system is known as Biochemistry.
Biochemistry is a study of the chemical changes that occur in living organisms.
Scientists that study biochemistry are called Biochemists.
Biochemistry studies the structure and function of biological molecules such as carbohydrates, lipids, proteins, e.t.c., as well the chemical reaction they undergo.
Biochemistry also studies the energy changes that occur in living systems.
In conclusion, the chemistry of living systems is called Biochemistry.
Learn more about biochemistry at: brainly.com/question/12273783
#SPJ1
Answer: Because water has a high specific heat capacity due to the hydrogen bonding within the H₂O molecules ; so it takes a great deal of energy, or heat, to break these bonds— or to form them.
______________________________________________________
I would say the answer is liquids
Answer:
The temperature of a substance when the average kinetic energy of its particles increases and decreases when the average kinetic energy decreases.
Explanation:
Atoms and molecules are in constant motion. Kinetic energy is a form of energy, known as energy of motion. Kinetic energy is a form of energy, known as energy of motion. The kinetic energy of an object is that which is produced due to its movements, which depends on its mass (m) and speed (v).
Temperature refers to a quantity used to measure the kinetic energy of a system. That is, temperature is defined as an indicator of the average kinetic energy of the particles in a body.
So, since temperature is a measure of the speed with which they move, the higher the temperature the faster they move.
Finally, <u><em>the temperature of a substance when the average kinetic energy of its particles increases and decreases when the average kinetic energy decreases.</em></u>
Answer:

Explanation:
Hello there!
In this case, according to the given information of the solubility of copper chloride, as the maximum amount of this salt one can dissolve without having a precipitate, we infer that since just 73 grams are actually dissolved, the following amount will remain solid as a precipitate:

Best regards!