They are falling under the sole influence of gravity all objects<span> will </span>fall<span> with the </span>same<span> rate of </span><span>acceleration needless of there size</span>
We'll look at two properties:
1. The variation in temperature
2. The material's heat transfer coefficient
By taking an example;
Use a circular rod made of a certain material (for example, steel) that is insulated all the way around.
One end of the rod is immersed in a huge reservoir of 100°C water, while the other is immersed in water at 40°C. The cold water is kept in an insulated cylinder on both sides. The temp of the chilly water is measured using a meter as a time - dependent.
Conclusion of experiment;
- Heat is transferred from a hot location to a cooler region.
- Whenever heat is applied to a body, its thermal power rises, and its temperature rises.
Learn more:
brainly.com/question/21532922?referrer=searchResults
The answer will be 50N.
This is because the spring reads weight and weight is mass times acceleration due to gravity.5kg*10m/s2=50N
Given
Weight of the block A, Wa = 20 lb, weight of block B Wb = 50 lb. Applied
force to block A, P = 6lb, coefficient of static friction µs = 0.4, coefficient
of kinetic friction µk = 0.3. If a force P
is applied to the body, no relative motion will take place until the applied
force is equal to the force of friction Ff, which is acting opposite to the
direction of motion. Magnitude of static force of friction between block A and
block B, Fs = µsN, where N is
reaction force acting on block A. Now, resolve the forces Fx = max. P = (mA +
mB)a,
6 = (20 / 32.2 + 50 / 32.2)a
2.173a = 6
A = 2.76 ft/s^2
To check slipping occurs between block A and block B, consider block A:
P – Ff = mAaA
6 – Ff = 1.71
Ff = 4.29 lb
And also,
N = wA. We know static friction,
Fs = µsN
Fs = 0.4 x 20
Fs = 8lb
Frictional force is less than static friction. Ff < Fs
<span>Therefors, acceleration of block A, aA = 2.76 ft/s^2, acceleration of
block B aB = 2.76 ft/s^2</span>