Answer:
this is the anwser
Explanation:
The oddball spiral galaxy, called Messier 66, is one-thirdof the Leo Triplet, a group of three interacting galaxies about 35 millionlight-years from Earth (a light-year is the distance light can cover in ayear).
Answer:
a= g = - 9.81 m/s2.
The following equations will be helpful:
a = (vf - vo)/t d = vot + 1/2 at2 vf2 = vo2 + 2ad
When you substitute the specific acceleration due to gravity (g), the equations are as follows:
g = (vf - vo)/t d = vot + 1/2 gt2 vf2 = vo2 + 2gd
If the object is dropped from rest, the initial velocity ("vi") is zero. This further simplifies the equations to these:
g = vf /t d = 1/2 gt2 vf2 = 2gd
The sign convention that we will use for direction is this: "down" is the negative direction. If you are given a velocity such as -5.0 m/s, we will assume that the direction of the velocity vector is down. Also if you are told that an object falls with a velocity of 5.0 m/s, you would substitute -5.0 m/s in your equations. The sign convention would also apply to the acceleration due to gravity as shown above. The direction of the acceleration vector is down (-9.81 m/s2) because the gravitational force causing the acceleration is directed downward.
hope this info helps you out!
Answer:
0.75 NC⁻¹
Explanation:
Electric field intensity ( or strength of the electric field ) is the force per a 1 C charge,
So, Force (F) = Electric field intensity(E) × Charge (q)
F = E×q ⇒ q = F/E
= 4.5×10⁻⁴/6×10⁻⁴ = 0.75 NC⁻¹
According to cool om's law electric fields are generated due to charges. When charges are same there is a repulsive force acted on both charges. When charges are opposite there is a attraction force acted on both charges.
According to cool om's law,
F =G×q1×q2 / r²
F = force exerted of two charges
q1 , q2 = charges
r = distance between two charges
And also Electric field intensity is a vector which has a magnitude and direction both. Direction is depending on a charge and the sign of the charge
An action of push or pull on an object is force. The two bodies interact with each other. Newton's third law of motion states that every action has equal and opposite reaction. This means that if an object A exerts F amount of force on another object B, object B would also exert the same amount of force on A. when a person driving at speed 130 miles per hour hits wall, the wall would also apply an equal force on car and that would cause the damage to it.