Answer:
5.16 m/s
Explanation:
mass of car, m1 = 1689 kg
mass of truck, m2 = 2000 kg
Velocity of truck after collision, v2 = 17 km/h = 4.72 m/s
Let the initial velocity of car is u1.
initial velocity of truck, v1 = 0
velocity of car after collision, v1 = ?
Use conservation of momentum
m1 x u1 + m2 x u2 = m1 x v1 + m2 x v2
1689 x u1 + 2000 x 0 = 1689 x v1 + 2000 x 4.72
1689 u1 = 1689 v1 + 9444.4 .... (1)
As the collision is elastic, so coefficient of restitution is 1.
Use the formula for the coefficient of restitution.
![e=\frac{v_{1}-v_{2}}{u_{2}-u_{1}}](https://tex.z-dn.net/?f=e%3D%5Cfrac%7Bv_%7B1%7D-v_%7B2%7D%7D%7Bu_%7B2%7D-u_%7B1%7D%7D)
e = 1
v1 - 4.72 = 0 - u1
v1 = 4.72 - u1
Substitute the value of v1 in equation (1)
1689 u1 = 1689 (4.72 - u1) + 9444.44
1689 u1 = 7972.08 - 1689 u1 + 9444.44
3378 u1 = 17416.52
u1 = 5.16 m/s
Thus, the speed of car before collision is 5.16 m/s.