Because of the pole and the generator you would have to biuld
Answer:
Explanation:
We shall consider direction towards left as positive Let the required velocity be v and let v makes an angle φ
Applying law of conservation of momentum along direction of original motion
m₁ v₁ - m₂ v₂ = m₂v₃ - m₁ v₄
0.132 x 1.25 - .143 x 1.14 = 1.03 cos43 x .143 - v cos θ
v cos θ = .8
Applying law of conservation of momentum along direction perpendicular to direction of original motion
1.03 sin 43 x .143 = .132 x v sinθ
v sinθ = .76
squaring and adding
v² = .76 ² + .8²
v = 1.1 m /s
Tan θ = .76 / .8
θ = 44°
Answer:
100years later
Explanation:
Because the lights will arrive at world after 100 years later.
<h3>Answer</h3>
6.6 N pointing to the right
<h3>Explanation</h3>
Given that,
two forces acting of magnitude 3.6N
angle between them = 48°
To find,
the third force that will cause the object to be in equilibrium
<h3>1)</h3>
Find the vertical and horizontal components of the two forces
vertical force1 = sin(24)(3.6)
vertical force2= -sin(24)(3.6)
<em>(negative sign since it is acting on opposite direction)</em>
vertical force3 = sin(24)(3.6) - sin(24)(3.6)
= 0
<h3>2)</h3>
horizontal force1 = cos(24)(3.6)
horizontal force2= cos(24)(3.6)
horizontal force3 = cos(24)(3.6) + cos(24)(3.6)
= 2(cos(24)(3.6))
= 6.5775 N
≈ 6.6 N
<em />
<em />
Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is
