<span>Hydroxy group..
... :):) ....</span>
Answer:
a. similar properties
Explanation:
In a given column of the periodic table, the elements have similar properties.
A column on the periodic table is known as a group or family. The group is a vertical arrangement of elements on the periodic table.
Elements in the same group have the same number of valence electrons after their group number.
For example, all the elements in group 1 have one valence electron. Those in group 2 have 2 valence electrons.
The valence electrons of an atom determines its chemical properties. So, all elements in the same group have the same chemical properties.
In a neutral ionic compound, you can determine its sub-scripts by simply flipping the ionic charges and dropping the signs: so AlS would be Al2S3
1) Chemical reaction:
2(CH₃COO)₃Fe + 3MgCrO₄ → Fe₂(CrO₄)₃ + 3(CH₃COO)₂Mg.
m((CH₃COO)₃Fe) = 15,0 g.
m(MgCrO₄) = 10,0 g.
n((CH₃COO)₃Fe) = m((CH₃COO)₃Fe) ÷ M((CH₃COO)₃Fe).
n((CH₃COO)₃Fe) = 15 g ÷ 233 g/mol.
n((CH₃COO)₃Fe) = 0,064 mol.
n(MgCrO₄) = m(MgCrO₄) ÷ M(MgCrO₄).
n(MgCrO₄) = 10 g ÷ 140,3 g/mol.
n(MgCrO₄) = 0,071 mol; limiting reagens.
From chemical reaction: n(MgCrO₄) : n((CH₃COO)₂Mg) = 3 : 3.
n((CH₃COO)₂Mg) = 0,071 mol.
m((CH₃COO)₂Mg) = 0,071 mol · 142,4 g/mol.
n((CH₃COO)₂Mg) = 10,11 g.
2) Chemical reaction:
2(CH₃COO)₃Fe + 3MgSO₄ → Fe₂(SO₄)₃ + 3(CH₃COO)₂Mg.
m((CH₃COO)₃Fe) = 15,0 g.
m(MgSO₄) = 15,0 g.
n((CH₃COO)₃Fe) = m((CH₃COO)₃Fe) ÷ M((CH₃COO)₃Fe).
n((CH₃COO)₃Fe) = 15 g ÷ 233 g/mol.
n((CH₃COO)₃Fe) = 0,064 mol; limiting ragens.
n(MgSO₄) = m(MgSO₄) ÷ M(MgSO₄).
n(MgSO₄) = 15 g ÷ 120,36 g/mol.
n(MgSO₄) = 0,125 mol; limiting reagens.
From chemical reaction: n(CH₃COO)₃Fe) : n((CH₃COO)₂Mg) = 2 : 3.
n((CH₃COO)₂Mg) = 0,064 mol · 3/2.
n((CH₃COO)₂Mg) = 0,096 mol.
m((CH₃COO)₂Mg) = 0,096 mol · 142,4 g/mol.
m((CH₃COO)₂Mg) = 13,7 g.
According to Ideal Gas Equation, Volume is related to Pressure and Temperature as follow,
P V = n R T
Or,
V = n R T / P
This relation shows that Volume is directly related to Temperature and Inversely related to pressure. So,
<span>A. Chilling a can of soda: As temperature is decreased so the volume will also decrease.
</span><span>B. Heating a hot-air balloon: As temperature is increased, so Volume will also increase.
</span><span>C. Squeezing a balloon: As pressure is applied, so volume will decrease.
</span><span>D. Pressurizing an air tank: Again pressure is applied so volume will decrease.</span>