Given the temperature, we can tell if the substance is cold or not relative to the reference temperature. For example, compared to the substance having a temperature of 15 degrees C, the substance is colder and it is hotter from the substance of temperature lesser than 12 degrees C.
Answer:
Igneous rock
Explanation:
Igneous rocks are formed through the cooling and solidification of magma. It undergoes changes in temperature and pressure that causes it to cool, solidify, and crystallize.
Answer:
Option (d) is correct.
Explanation:
Work done is given by :
W = Fd, where F is force and d is displacement
Unit of work done :
The SI unit of force is Newton (N) and that of displacement is meter (m). So, the unit of work done is N-m. It is call Joule. It means that the unit of work done is Joule.
Power is given by rate at which the work is done. It is given by :
P = W/t, W is work done and t is time
Unit of power:
Unit of work is Joule (J) and that of time is second (s). It means that the unit of power is Watt and it is equal to Joule/second
Hence, the correct option is (d) "The unit for work is a joule. The unit for power is a watt, which is a joule per second".
Answer:
= 33.33 cm
Explanation:
Given:
When mass,
=21 kg
distance travelled is
= 140 cm
When mass,
=5 kg
distance travelled is
= ?
Hooke's law state that within elastic limit, when an external force is applied to a body, the body gets deformed and when the force is released the gets back to its original form.
Therefore according to the question,


= 33.33 cm
Distance travelled is 33.33 cm when mass is 5 kg.
Answer:
1. The period is 1.74 s.
2. The frequency is 0.57 Hz
Explanation:
1. Determination of the the period.
Spring constant (K) = 30 N/m
Mass (m) = 2.3 Kg
Pi (π) = 3.14
Period (T) =?
The period of the vibration can be obtained as follow:
T = 2π√(m/K)
T = 2 × 3.14 × √(2.3 / 30)
T = 6.28 × √(2.3 / 30)
T = 1.74 s
Thus, the period of the vibration is 1.74 s.
2. Determination of the frequency.
Period (T) = 1.74 s
Frequency (f) =?
The frequency of the vibration can be obtained as follow:
f = 1/T
f = 1/1.74
f = 0.57 Hz
Thus, the frequency of the vibration is 0.57 Hz