So??
what is the question??
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
Answer:
The electric potential at the surface of a charged conductor<u> is always such that the potential is zero at all points inside the conductor.</u>
Explanation:
Each point on the surface of a balanced charged conductor has the same electrical potential.
The surface on any charged conductor in electrostatic equilibrium is an equipotential surface. Since the electric field is equal to zero inside the conductor, the electric potential at any point inside and on the surface is equivalent to its value.
I believe the answer would be c because i think that you multiply the 2