<h2>
Answer:</h2><h2>
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
</h2>
Explanation:
A meteoroid is in a circular orbit 600 km above the surface of a distant planet.
Mass of the planet = mass of earth = 5.972 x
Kg
Radius of the earth = 90% of earth radius = 90% 6370 = 5733 km
The acceleration of the meteoroid due to the gravitational force exerted by the planet = ?
By formula, g = 
where g is the acceleration due to the gravity
G is the universal gravitational constant = 6.67 x

M is the mass of the planet
r is the radius of the planet
Substituting the values, we get
g = 
g = 12.12 m/
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
The magnitude of the average impulsive force imparted to the ball if it is in contact with the bat is 6000 N
The mass of the baseball, m = 0.15 kg
The speed at which it moves, v = 30 m/s
Time at which the baseball was in contact with the bat, t = 0.75 ms
t = 0.75/1000 s
t = 0.00075 s
The impulsive force is given by the formula:

Substitute m = 0.15 kg, v = 30, and t = 0.00075s into the formula above:

The magnitude of the average impulsive force imparted to the ball if it is in contact with the bat is 6000 N
Learn more here: brainly.com/question/25892144
They’re falling toward earth & moving forward at about the same velocity. because the downward and forward forces are nearly equal, the astronauts are not pulled in any specific direction, so they float . <span>
</span>
Answer:
τ=0.060 N.m
Explanation:
By kinematics:

Solving for α:

where ωo = 600*2*π/60; ωf = 0; t=10s

The sum of torque is:


