Angular momentum is conserved, just before the clay hits and just after;
<span>mv(L/2) = Iw </span>
<span>I is the combined moment of inertia of the rod, (1/12)ML^2 , and the clay at the tip, m(L/2)^2 ; </span>
<span>I = [(1/12)ML^2 + m(L/2)^2] </span>
<span>Immediately after the collision the kinetic energy of rod + clay swings the rod up so the clay rises to a height "h" above its lowest point, giving it potential energy, mgh. From energy conservation in this phase of the problem; </span>
<span>(1/2)Iw^2 = mgh </span>
<span>Use the "w" found in the conservation of momentum above; and solve for "h" </span>
<span>h = mv^2L^2/8gI </span>
<span>Next, get the angle by noting it is related to "h" as; </span>
<span>h = (L/2) - (L/2)Cos() </span>
<span>So finally </span>
<span>Cos() = 1- 2h/L = 1 - mv^2L/4gI </span>
<span>m=mass of clay </span>
<span>M=mass of rod </span>
<span>L=length of rod </span>
<span>v=velocity of clay</span>
Answer:
Explanation:
According to Equations of Projectile motion :

vsin(x) = 11 * 9.8 / 2 = 53.9 m/sec
(A) v (Initial velocity) = 11 * 9.8 / 2 * sin(35) = 94.56 m/sec

(B) Maximum Height = 53.9 * 53.9 / 2 * 9.8 = 142.2 m

(C) Horizontal Range = 94.56 * 0.81 * 11 = 842.52 m
Answer:
Into sound and heat energy due to friction.
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Rinse Bacon in Water Before Cooking to Reduce Shrinkage by 50 Percent. This sounds like a bizarre thing to do, but we're talking about less bacon shrinkage! Rinse your… At the end of the day, the best way to keep your bacon from shrinking when cooking is to cook it low and slow in the oven.